J-PARC K1.8ビームラインにおける ペンタクォーク探索実験

白鳥 昂太郎 for the E19 collaboration

日本原子力研究開発機構 (JAEA) 先端基礎研究センター (ASRC) ハドロン物理研究グループ

> KEK Theory Center J-PARC Hadron Salon 2011/9/29

E19 collaboration

2

K. Shirotori,^{1, 2} T.N. Takahashi,^{3, 4} S. Adachi,⁵ A. Agnello,⁶ S. Ajimura,⁷ K. Aoki,⁸ H. Bang,⁹ B. Bassalleck,¹⁰ E. Botta,¹¹ S. Bufalino,¹¹ P. Evtoukhovitch,¹² A. Feliciello,¹³ H. Fujioka,⁵ F. Hiruma,² R. Honda,² K. Hosomi,² Y. Ichikawa,⁵ M. Ieiri,⁸ Y. Igarashi,⁸ K. Imai,¹ N. Ishibashi,¹⁴ S. Ishimoto,⁸ K. Itahashi,³ R. Iwasaki,⁸ G.G. Joo,⁹ M.J. Kim,⁹ S.J. Kim,⁹ R. Kiuchi,⁹ T. Koike,² Y. Komatsu,⁴ V.V. Kulikov,¹⁵ S. Marcello,¹¹ S. Masumoto,⁴ K. Matsuoka,¹⁴ K. Miwa,² M. Moritsu,⁵ T. Nagae,⁵ K. Nakazawa,¹⁶ M. Naruki,⁸ M. Niiyama,⁵ H. Noumi,⁷ K. Ozawa,^{8,4} N. Saito,⁸ A. Sakaguchi,¹⁴ H. Sako,¹ V. Samoilov,¹² M. Sato,² S. Sato,¹ Y. Sato,⁸ S. Sawada,⁸ M. Sekimoto,⁸ H. Sugimura,⁵ S. Suzuki,⁸ H. Takahashi,⁸ T. Takahashi,⁸ H. Tamura,² T. Tanaka,¹⁴ K. Tanida,⁹ A.O. Tokiyasu,⁵ N. Tomida,⁵ Z. Tsamalaidze,¹² M. Ukai,² K. Yagi,² T.O. Yamamoto,² S.B. Yang,⁹ Y. Yonemoto,² C.J. Yoon,⁹ and K. Yoshida¹⁴ ¹JAEA, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ²Department of Physics, Tohoku University, Sendai 980-8578, Japan ³RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁴Department of Physics, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan ⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁶Dipartment di Fisica, Politecnico di Torino, Torino, Italy ⁷Research Center for Nuclear Physics (RCNP), 10-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan ⁸KEK, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan ⁹Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ¹⁰Department of Physics and Astronomy, University of New Mexico, New Mexico 87131-0001, USA ¹¹Dipartment di Fisica Sperimentale, Universite di Torino, Torino, Italy ¹² Joint Institute for Nuclear Research, Dubuna, Moscow region, Russia ¹³INFN Sez. Di Torino, Torino, Italy ¹⁴Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹⁵ITEP, Institute of Theoretical and Experimental Physics, Moscow 117218, Russia ¹⁶Physics Department, Gifu University, Gifu 501-1193, Japan

Collaborator :~70 people. Students: 1/3

Contents

3

Introduction

- Search for Θ^+
- Hadronic reaction
- Experiment & Analysis
 - Experimental apparatus
 - Data spectra
- Result & Discussion
- Summary
- Future plan

Introduction

4

 \bullet \bullet \bullet

Θ⁺ pentaquark baryon

T. Nakano *et al.*, Phys. Rev. Lett., 91:012002, 2003.

5

Θ^+ : First reported by the LEPS collaboration

- S = +1 (uudds)
- $\gamma \mathbf{n} \rightarrow \mathbf{K}^{-} \Theta^{+} \rightarrow \mathbf{K}^{-} \mathbf{K}^{+} \mathbf{n}$
- M=1540 \pm 10 MeV/c²
- $\Gamma < 25 \text{ MeV/c}^2$ (Experimental resolution)

Θ^+ : Predicted by Diakonov *et al*.

- Anti-decuplet
- M~1530 MeV/c², Γ<15 MeV/c²

Good agreement between theory and experiment ⇒Triggered investigation of the Θ⁺ pentaquark

What can we lean from pentaquark ?

QCD : Hadrons to be a color singlet, not restrict the number of quarks ⇒Exotic hadron can exist.

Pentaquark (Θ^+)

What can we lean from pentaquark ?

QCD : Hadrons to be a color singlet, not restrict the number of quarks ⇒Exotic hadron can exist.

Θ⁺ property (if exist)

- Very narrow decay width $\Gamma \sim a \text{ few MeV } ? \Leftrightarrow \Gamma \sim \text{several 10 MeV}$
- ⇒Some mechanism to suppress decay Internal configuration change of quarks ?

* What is the building block of exotic hadron ?

- Molecular : Baryon + meson : $n(udd)+K^+(u\bar{s})$ c.f. $\Lambda(1405)$
- **Di-quark** : $(u-d) + (u-d) + \overline{s}$

(Jaffe et al., Phys. Rev. Lett. 91, 232003 (2003).)

Exotic hadron \Rightarrow **General property of hadron**

 Θ^+ : To be OR not to be

Present status of \Theta^+

8

Θ⁺ status : Many <u>positive</u> results & Many <u>negative</u> results

Present status of \Theta^+

	-			
Group	Reaction	Mass	Width	Statistical
		(MeV)	(MeV)	significance (σ)
LEPS	$\gamma C \rightarrow K^+ K^-(n)$	1540 ± 10	$<\!\!25$	4.6
LEPS	$\gamma C \rightarrow K^+ K^-(n)$	1524 ± 2	$<\!25$	5.1
DIANA	$K^+Xe \to K^0_s pX$	1539 ± 2	<9	4.4
DIANA	$K^+Xe \to K^0_s pX$	1538 ± 2	0.39 ± 0.1	8
CLAS(d)	$\gamma d \to K^+ K^- p(n)$	1542 ± 5	<21	(5.2)
CLAS(p)	$\gamma p \to \pi^+ K^+ K^-(n)$	1555 ± 10	$<\!\!26$	7.8
SAPHIR	$\gamma p \to K^+ K_s^0 n X$	1540 ± 6	$<\!25$	4.8
ITEP	$\nu A \to K_s^0 p X$	$\frac{1533}{\pm}5$	$<\!20$	6.7
HERMES	$e^+d \to K^0_s pX$	1528 ± 3	12 ± 9	4.2
COSY-TOF	$pp \rightarrow K_s^0 p \Sigma^+$	1530 ± 5	<18	4.7
ZEUS	$e^+p \rightarrow e^+ K_s^0 p X$	1522 ± 3	8 ± 4	4.6
NOMAD	$\nu A \to K_s^0 p X$	1529 ± 3	$2 \sim 3$	4.3 Gr
SVD	$pA \to K_s^0 pX$	1526 ± 5	<24	5.6 BF
SVD	$pA \to K_s^0 pX$	1523 ± 5	<14	8.0 BE

Positive results

Negative results

Group	Reaction	Limit
DEC		<11×10-5 P.P. (00% C.I.)
DEG	$e e \rightarrow J/\Psi \rightarrow 00$	$< 1.1 \times 10^{-6}$ D.R. (90% C.L.)
BES	$e^+e^- \rightarrow \Psi(2S) \rightarrow \Theta\Theta$	$< 8.4 \times 10^{-6}$ B.R. (90% C.L.)
ALEPH	$e^+e^- \rightarrow Z \rightarrow pK_s^0 X$	$< 6.2 \times 10^{-4}$ B.R. (95% C.L.)
BarBar	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK^0_s X$	$< 1.0 \times 10^{-4}$ B.R. (90% C.L.)
BarBar	$eBe \rightarrow pK_s^0 X$	not given
Belle	$e^+e^- \rightarrow B^0 \bar{B^0} \rightarrow p \bar{p} K^0_s X$	$< 2.3 \times 10^{-7}$ B.R. (90% C.L.)
Belle	$K^+n \rightarrow K^0_s pX$	$\Gamma < 0.64 MeV (90\% \text{ C.L.})$
CDF	$p\bar{p} \rightarrow K_s^0 p X$	$< 0.03 \times \Lambda^*$ (90% C.L.)
SPHINX	$pC \rightarrow K_s^0 pX$	$< 0.1 \times \Lambda^*$ (90% C.L.)
HERA-B	$pA \rightarrow K_s^0 pX$	$< 2.7\% \times \Lambda^*$ (95% C.L.)
HyperCP	$pCu \rightarrow K_s^0 pX$	$< 0.3\% K_s^0 p$
FOCUS	$\gamma BeO \rightarrow K_s^0 pX$	$< 0.02 \times \Sigma^*$ (95% C.L.)
PHENIX	$dAu \rightarrow K^- \bar{n}X$	not given
WA89	$\Sigma^+ A \rightarrow K^0_s p X$	$< 1.8 \mu b/A$ (99% C.L.)
CLAS	$\gamma p \rightarrow \bar{K}^0_* \bar{K}^+ n$	< 0.8 nb (95% C.L.)
CLAS	$\gamma d \rightarrow K^- p K^+ n$	< 0.15 - 3 nb (95% C.L.)
CLAS	$\gamma d \rightarrow K^+ n \Lambda$	< 5 - 25 nb (95% C.L.)
COSY-TOF	$pp \rightarrow \Sigma^+ p K_s^0$	$< 0.15 \mu b/A$ (95% C.L.)
NOMAD	$\nu A \rightarrow K_s^0 p X$	$< 2.13 \times 10^{-3} \nu CC (90\% C.L.)$

Positive Results

Negative Results

Present status of \Theta^+

12

Θ^+ status : Many <u>positive</u> results & Many <u>negative</u> results

Positive results

- LEPS new report : $\gamma d \rightarrow p K^-K^+ n$
- CLAS(p) : $\gamma p \rightarrow \pi^+ K^- \Theta^+ \rightarrow \pi^+ K^- K^+ n$
- **DIANA** : $K^+ n \rightarrow \Theta^+ \rightarrow K^0 p$

Negative results

- High energy experiments
- CLAS : γ d→p K⁻Θ⁺→p K⁻K⁺n
 * High statistics & high sensitivity

\Rightarrow Controversial situation

Present status of \Theta^+

LEPS Θ^+ status : Many <u>positive</u> results & Many <u>negative</u> results vents/(0.00625 GeV/c²) 30 DIANA Counts/3 MeV 20 701/ndf = 32.86/28 (a) $= 1537.4 \pm 0.879$ 10 60 Complete data 50 1.5 1.6 1.7 1.8 1.9 40 M(nK⁺) (GeV/c²) 30 20 10 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 **CLAS** vents/5 N 1.6 1.8 M(nK⁺) [GeV/c²] 1.4 1.6 1.8 M(nK*) [GeV/c2] doldM | nh/(GeV/c²) 60 40 20 9.4 1.45 1.55 1.5 1.6 1.7 1.75 1.8 1.65 M(nK*) | GeV/c2

13

Positive results

- **LEPS new report :** γ d \rightarrow p K⁻K⁺n
- CLAS(p) : $\gamma p \rightarrow \pi^+ K^- \Theta^+ \rightarrow \pi^+ K^- K^+ n$
- DIANA : $K^+ n \rightarrow \Theta^+ \rightarrow K^0 p$

Negative results

- **High energy experiments**
- <u>CLAS : $\gamma d \rightarrow p K^- \Theta^+ \rightarrow p K^- K^+ n$ </u> * High statistics & high sensitivity

\Rightarrow Controversial situation

LEPS & CLAS

Reaction : $\gamma d \rightarrow p K^- \Theta^+ \rightarrow p K^- K^+ n$ Difference : K[±] detection angle

- Forward : LEPS
- Backward (side) : CLAS
- ***** Detection of re-scattering proton : CLAS

LEPS & CLAS

Reaction : $\gamma d \rightarrow p K^- \Theta^+ \rightarrow p K^- K^+ n$ Difference : K[±] detection angle

- Forward : LEPS
- Backward (side) : CLAS
- ***** Detection of re-scattering proton : CLAS

Explained by experimental condition ⇒Not contradicted

Present status of \Theta^+

LEPS Θ^+ status : Many <u>positive</u> results & Many <u>negative</u> results **Positive results** vents/(0.00625 GeV/c²) **LEPS new report :** γ d \rightarrow p K⁻K⁺n 40 $\underline{CLAS(p): \gamma p \rightarrow \pi^+ K^- \Theta^+ \rightarrow \pi^+ K^- K^+ n}$ 30 - DIANA : $K^+ n \rightarrow \Theta^+ \rightarrow K^0 p$ DIANA Counts/3 MeV 20 70 **Negative results** /ndf = 32.86/28 (a) $= 1537.4 \pm 0.879$ 10 60Complete data **High energy experiments** 50 - CLAS : $\gamma d \rightarrow p K^- \Theta^+ \rightarrow p K^- K^+ n$ 1.6 1.7 1.8 1.5 1.9 40 M(nK⁺) (GeV/c²) * High statistics & high sensitivity 30 20 \Rightarrow Controversial situation 10 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 **CLAS** vents/5.2 1.6 1.8 M(nK⁺) [GeV/c²] 1.4 1.6 1.8 M(nK*) [GeV/c2] doldM | nh/(GeV/c²) 60 40

20

9.4

1.45

1.5

1.55

1.6

M(nK*) | GeV/c2

1.65

1.7 1.75

1.8

"Best" positive evidence

$$\gamma \ p \rightarrow \pi^{\!+} \ K^{\!-} K^{\!+} \left(n\right)$$

- CLAS: V. Kubarovsky *et al.* PRL 92 032001 (2004)
- Combined analysis of all CLAS data on protons for Eγ <5.5 GeV
- Cuts: forward π^+ , backward K⁺
- Indications of production from heavy N*(2420) ?

"Best" positive evidence

Eγ ~ 3.2 – 5.47 GeV

 $\gamma p \rightarrow \pi^+ K^- K^+(n)$

- CLAS: V. Kubarovsky *et al.* PRL 92 032001 (2004)
- Combined analysis of all CLAS data on protons for Eγ <5.5 GeV

- Cuts: forward π⁺, backward K⁺
- Indications of production from heavy N*(2420) ?

Present status of \Theta^+

LEPS

19

Positive results

- **LEPS** new report : $\gamma d \rightarrow p K^- K^+ n$
- $CLAS(p) : \gamma p \rightarrow \pi^+ K^- \Theta^+ \rightarrow \pi^+ K^- K^+ n$
- DIANA : $K^+ n \rightarrow \Theta^+ \rightarrow K^0 p$

Negative results

- High energy experiments
- CLAS : $\gamma d \rightarrow p K^- \Theta^+ \rightarrow p K^- K^+ n$ * High statistics & high sensitivity

\Rightarrow Controversial situation

* Width

- **DIANA** : $K^+ n \rightarrow \Theta^+ \rightarrow K^0 p$ $-\Gamma = 0.39 \pm 0.1 \text{ MeV/c}^2$
- **BELLE** : $K^+ n \rightarrow K^0 pX$
 - $\Gamma < 0.64 \text{ MeV/c}^2$ (90% C.L.)

* Low energy hadron reaction (π or K beam)

- Few data
- **Expected larger production cross section**
- \Rightarrow Essential part for the investigation of Θ^+

Hadronic reaction

20

 \bullet \bullet \bullet

Hadronic production

Previous experiments at KEK-PS

- E522 : σ< 3.9 µb (90% C.L.) @ 1.92 GeV/c (S-wave production and isotropic K⁻ emission)
- E559 : σ< 3.5 μb/sr (90% C.L.)

$$\pi^{-} p \rightarrow K^{-} \Theta^{+} : \sigma < 3.9 \ \mu b \ (90\% \ C.L.)$$

$$- Both g_{KN\Theta} \& g_{K^{*}N\Theta} \text{ are small.}$$

$$- \Gamma < 10 \ MeV$$

$$K^{+} p \rightarrow \pi^{+} \Theta^{+} : \sigma < 3.5 \ \mu b/sr \ (90\% \ C.L.)$$

$$- Low backward sensitivity$$

$$\Rightarrow g_{K^{*}N\Theta} \sim 0$$

$$CLAS \ result \ (Photo-production)$$

$$\gamma p \rightarrow K^{0}\Theta^{+} \rightarrow K^{0}K^{+}n : upper \ limit < 0.8 \ nb$$

$$\Rightarrow g_{K^{*}N\Theta} \sim 0$$

Θ⁺ production mechanism on hadron beams & property

- Small K* coupling : $g_{K^*N\Theta} \sim 0$
- s-channel dominance $(\pi^- p \rightarrow K^- \Theta^+)$?
- Very narrow width : $\Gamma < 1 \text{ MeV/c}^2$
- * Expect small cross section : Order of 100 nb

 \Rightarrow Need experiment with high sensitivity

Θ^+ search by high-resolution spectroscopy via $\pi^- + p \rightarrow \Theta^+ + K^-$: J-PARC E19

Spokesperson M. Naruki

27

Previous E522 experiment

Reaction : $\pi^- + p \rightarrow \Theta^+ + K^- @ 1.92 \text{ GeV/c}$ Upper limit of cross section \Leftrightarrow Mass resolution

 ΔM~14 MeV/c² (FWHM) (KURAMA spectrometer)

> K. Miwa *et al*. Phys. Lett. B, 635:72, 2006.

J-PARC E19

Reaction : $\pi^- + p \rightarrow \Theta^+ + K^- @ 1.92 \text{ GeV/c}$

- High resolution : SKS
 ★ ΔM< 2 MeV/c²(FWHM)
- High statistics : High intensity beam

⇒ Conclusive result by higher sensitivity The first physics run at the J-PARC hadron facility !

Goal of beam time in 2010

- Original plan : $10^{7}\pi^{-1}/3.6 \sec \times 6 \text{ days} = 1.44 \times 10^{12}\pi^{-1}$
 - 3 momenta : 1.87, 1.92, 1.97 GeV/c \Rightarrow 4.80 $\times 10^{11} \pi^{-1}$
- ⇒More than 60σ peak (estimated by E522 upper limit)

- Realistic condition
 - $0.075 \times 10^{7} \pi^{-}(750 \text{ k})/6 \sec \Rightarrow 133 \text{ days}$

Cannot use full beam intensity due to the beam micro-structure

- * Step 1:
 - <u>Needs 6 days to confirm Θ⁺ with 10σ @ 1.92 GeV/c</u>
 - $0.075 \times 10^{7} \pi^{-1}/6 \sec \times 6 \text{ days} = 6.48 \times 10^{10} \pi^{-1}$
 - (Assuming 10% duty factor)

28

29

 \bullet \bullet \bullet

J-PARC

Experimental apparatus

Beam time

J-PARC & Hadron facility

J-PARC & Hadron facility

31

MR present operation : 30 GeV, 1/100 intensity

Hadron facility

32

Hadron facility & K1.8 beam line

Hadron facility & K1.8 beam line

J-PARC K1.8 beam line

General-purpose mass-separated beam line Max. momentum : 2 GeV/c

⇒Major area of hadron and hypernuclear experiment

- Exotic hadron search
- **Ξ** hypernuclei
- Hypernuclear γ-ray spectroscopy
- n-rich hypernuclei
- YN scattering

SKS (Superconducting Kaon Spectrometer)

- **SKS magnet moved from KEK**
- Magnetic field : 2.5T
- $\Rightarrow Good momentum resolution$ $(\Delta p \propto 1/BL^2)$
- Small K decay : Short flight-path
- Large yield : Wide pole gap

SKS performance (design value)

Momentum resolution :

 $\Delta p/p \sim 2.0 \times 10^{-3}$

- Angular acceptance : 100 msr
- Momentum range : 0.75-1.20 GeV/c

Present SKS @ J-PARC

Status on Apr 2009

No infrastructure (electricity, cooling water), •beam line magnet, detectors, cables...

Construction & Working

SKS Set down at KEK : 2007 Detector construction : 2008 Installation : 2009/4-10

Status on Feb 2010

Commissioning 2009/10-2010/2

- All detectors checked and ready
- Commissioning data taken : p(π⁻, K⁺)Σ⁻, p(π⁻, p)π⁻
- E19 test data

Status on Feb 2010

Commissioning 2009/10-2010/2

40

- All detectors checked and ready
- Commissioning data taken : p(π⁻, K⁺)Σ⁻, p(π⁻, p)π⁻
- E19 test data

Performance of SKS $\Delta M_{\Sigma} = 1.6 \text{ MeV/c}^2 \text{ (FWHM)}$ ($p_{\pi} = 1.25 \text{ GeV/c}$)

Commissioning of K1.8 system successful

K1.8 beam line setup

K1.8 beam line spectrometer & SKS ⇒Missing mass spectroscopy

- K1.8 beam line spectrometer : p_π PID counters
 - Timing counters : TOF
 - Gas Cherenkov (π/e) : n=1.002
 Tracking
 - MWPCs : 1 mm pitch
 - MWDCs : 3 mm pitch
- SKS system : p_K PID counters
 - Timing counter
 - Aerogel Cherenkov (K/π) : n=1.05
 - Lucite Cherenkov (K/p) : n=1.49
 Tracking
 - MWDCs : 3 mm pitch
 - DCs : 10 mm pitch, 2m × 1m size
- * Target: Liquid hydrogen ~0.86 g/cm²
 - Free from Fermi motion effect

SKS spectrometer

Data summary of E19

* Beam time : 2010/10-11 (~250 hours)

Data

- Empty run (no Liquid hydrogen) : Check background from target materials
- Calibration data : Check cross section, mass resolution, absolute value of missing mass
 - p(π⁻, K⁺)Σ⁻ run @ 1.37 GeV/c
 - p(π⁺, K⁺)Σ⁺ run @ 1.37 GeV/c
 - * 1.37 GeV/c beam \Rightarrow Same as K momentum for Θ^+ run
- Θ⁺ production run : October (50 hours)/November (82 hours)
 p(π⁻, K⁻) @ 1.92 GeV/c
 ⇒7.8 × 10¹⁰ π (E522 total beam × 10 times)

* Beam intensity : ~1 M/spill (2.2 sec extraction period) Due to the bad beam micro-structure

43

Data spectrum Cross section Missing mass resolution

Physics information

Missing mass : $\pi^- + p \rightarrow \Theta^+ + K^- @ 1.92 \text{ GeV/c}$

- Θ^+ peak + Background (associated reaction)
 - Incisive measurement
- Cross section (or upper limit)
 - Differential CS
 - Scattering angle : 2° to ~15°
 - Mass dependence : Angular acceptance
 - Total CS : Assuming angular dependence
- Θ⁺ mass (if observed)
 - Absolute value with a few MeV error
- Width
 - Direct measurement (if observed)
 - Estimated from cross section

Analysis chart

45

```
New event
Trigger counter : BH1&2, TOF, LC
   ↓ Time-of-flight, ADC&TDC cut
SKS drift chamber : SDC1&2, SDC3&4 (Local tracking)
SKS tracking : Scattered particle momentum
   ↓ K out selection
K1.8 chamber : BC1&2, BC3&4 (Local tracking)
K1.8 tracking : Beam momentum
   \downarrow \pi in selection
Vertex reconstruction : (\pi, K) event reconstruction
```

↓ Good vertex event

Missing mass : Cross section

Analysis chart

New event

Event selection

Trigger counter : BH1&2, TOF, LC

↓ Time-of-flight, ADC&TDC cut

K event & Momentum : p_K

SKS drift chamber : SDC1&2, SDC3&4 (Local tracking) SKS tracking : Scattered particle momentum

 \downarrow K out selection

K1.8 chamber : BC1&2, BC3&4 (Local tracking) K1.8 tracking : Beam momentum

 $\downarrow \pi$ in selection

Vertex reconstruction : (π, K) event reconstruction π event

↓ Good vertex event

& Momentum : p_{π}

46

Missing mass : Cross section

Particle identification

- Beam π
 - Time-Of-Flight Electrons rejected by GC $\Rightarrow e/\pi \sim 0.0005 @ 1.92 \text{ GeV/c}$
- Scattered K
 - TOF
 - + Path length & momentum $\Rightarrow M^2 = p/\beta(1-\beta^2)$

Beam π and scattered K are clearly separated.

Vertex reconstruction

48

- <u>~3 % background in the selected region</u>

,

Missing mass

 $\Sigma^{\pm}: \Delta M_{\Sigma} = 1.9 \pm 0.1 \text{ MeV/c}^2 (FWHM)$ \Rightarrow To estimate Θ^+ missing mass resolution $\Delta M_{\Theta} = 1.4 \pm 0.1 \text{ MeV/c}^2 (FWHM) (\Delta M \propto M_{target}/M_{\Theta})$ Error of the absolute mass value : ~2 MeV/c²

Cross section

50

- Tracking part BC1&2, BC3&4, SDC1&2, SDC3&4, K1.8, SKS Single track selection
- Counter, PID part Beam π selection, TOF, LC, AC, scattered K selection
- Other part

Decay, absorption, vertex, matrix trigger, acceptance

Efficiency studies

- Beam line chambers
 ⇒Stability checked during the Θ⁺ production run
- Trigger counters, SDC3&4 ⇒No position dependence
- Absorption, K decay, beam µ contamination
 ⇒Simulation by realistic experimental conditions with Geant4

Cross section

1	Factors	Meaning	Values (%)	SKS	
$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{1}{1}\right)$	ϵ_{daq}	Data-acquisition efficiency	75.2 ± 0.1	λ	
	f_{beam}	Beam normalization factor	92.4 ± 2.0	1	
	$\epsilon_{BC1\cdot 2}$	BC1·2 efficiency	94.3 ± 1.0	$f \times AQ$	
	$\epsilon_{BC3.4}$	BC3.4 efficiency	99.3 ± 0.2	Decay	
£ =	$\epsilon_{K1.8track}$	K1.8 tracking efficiency	93.1 ± 0.8		
$c_{K18} -$	$\epsilon_{single-track}$	Single track ratio	85.0 ± 0.8		
$\varepsilon_{SKS} =$	ϵ_{TOF}	TOF efficiency	$99.7 {\pm} 0.1$	N. C	
	ϵ_{LC}	LC efficiency	98.5 ± 0.1	Matrix	
• Trac	f_{AC}	$AC1 \cdot 2$ accidental veto factor	89.8 ± 1.2		
	$\epsilon_{SDC1\cdot 2}$	SDC1.2 efficiency	95.6 ± 0.2		
D U Sinc	$\epsilon_{SDC3.4}$	SDC3-4 efficiency	$99.8 {\pm} 0.2$		
SIII£	$\epsilon_{SKStrack}$	SKS tracking efficiency	96.0 ± 0.2		
	ϵ_{PID}	PID efficiency in SKS	92.9 ± 0.5		
• Cou	f_{decay}	K decay factor	41.7 ± 2.0		
Bea	f_{abs} (K ⁺)	K^+ absorption factor	96.8 ± 0.5		
	f_{abs} (K^{-})	K^- absorption factor	89.4 ± 0.5		
• Othe	ϵ_{vertex}	Event vertex cut efficiency	75.4 ± 0.7		
Dec	ϵ_{matrix}	The matrix trigger efficiency	99.0 ± 0.1		
•		Total relative error	± 6	•	

Cross section: Σ^+

Result

54

• • •

Missing mass Cross section

Missing mass spectrum

• All event sum : $7.8 \times 10^{10} \pi^{-10}$

***** If exists $M_{\odot} \sim 1.53 \text{ GeV/c}^2$

55

• With event selection

No prominent peak structure observed.

Comparison with background simulation

Simulation with measured cross section using angular distributions

- $\Lambda(1520) : \propto 1 + \cos^2\theta_{\rm cm}$ (D-wave)

Comparison with background simulation

Simulation with measured cross section using angular distributions

- $\Lambda(1520) : \propto 1 + \cos^2\theta_{\rm cm}$ (D-wave)

Differential cross section

58

Differential cross section (Averaged 2° -15° @Lab)
⇒Obtain 90 % confidence level upper limit
Width : 1.4 MeV/c² fixed (Estimated Σ data)

Upper limit of cross section

59

Differential cross section (Averaged 2° -15° @Lab)
⇒Obtain 90 % confidence level upper limit
Width : 1.4 MeV/c² fixed (Estimated Σ data)

Upper limit of cross section

Discussion

61

 \bullet \bullet \bullet

Experiment

Total yield (10 times) + Resolution (13.6 MeV/ $c^2 \Rightarrow 1.4$ MeV/ c^2) $\Rightarrow 10$ times higher sensitivity

Bump observed in E522 was not confirmed.

Theoretical calculation

Upper limit : < 0.3 μb @ **1.54 GeV/c²**

Theoretical calculations : T. Hyodo, private communication

Theoretical calculation

Upper limit : < 0.3 μb @ 1.54 GeV/c²

Theoretical calculations : T. Hyodo, private communication

Cross section for π & photo-induced reaction

- Present result : $< 300 \text{ nb/sr} (2^{\circ} -15^{\circ})$
- LEPS result : 12 ± 2 nb/sr (LEPS acceptance)

Liu&Ko	PS	Fs (0.5 GeV)	5 μb	$\pi p \rightarrow K \Theta$
	PS	Fc (1.2 GeV)	~8 nb	γр→КΘ
Oh	PS	w/o FF	8 nb	γр→КΘ
	PS	Fs (0.75)	1.5 nb	γр→КΘ
	PS	Fc(1.8)	24 nb	γр→КΘ
	PS	w/o FF	120 μb	$\pi p \rightarrow K \Theta$
	PS	Fs (0.5)	9 μb	$\pi p \rightarrow K \Theta$
	PS	Fc (1.8)	4 µb	πр→КΘ

Cross section for π **& photo-induced reaction**

- Present result : $< 300 \text{ nb/sr} (2^\circ -15^\circ)$
- LEPS result : 12 ± 2 nb/sr (LEPS acceptance)

Consistency check * Need PV scheme calculation for comparison + Photo-induced reaction by changing the Θ⁺ magnetic moment

 $\begin{array}{l} \label{eq:point} γ-induced : Nam et al. PLB633,483(2006)$\\ PV, Fc (0.75GeV), $k_Q=1$\\ $-$ for J^P=1/2^+, $\sigma=1.5$ nb at E$\gamma=2GeV$\\ $-$ for J^P=3/2^+, $\sigma=25$ nb at E$\gamma=2GeV$\\ $-$ for J^P=3/2^-, $\sigma=200$ nb at E$\gamma=2GeV$\\ $-$ for J^P=1/2^-, σ\sim0.3$ nb* at E$\gamma=2GeV$\\ \end{array}$

*hep-ph/0403009

π-induced : Hyodo, priv. comm. PV, Fs (0.5GeV), $J^P = 1/2^+$

- σ=0.51 μb at p_{π} =1.92 GeV/c PV, Fc (1.8GeV), J^{P} = 1/2⁺

66

 $-\sigma$ =0.30 µb at p_π=1.92 GeV/c

Summary of E19

• J-PARC E19 : High-resolution search via $\pi^- p \rightarrow K^- \Theta^+$ reaction The first physics experiment at the J-PARC hadron facility !

• Data taking of E19 has been successfully carried out.

- $7.8 \times 10^{10} \pi^-$ irradiated on LH₂ target
- Calibration data : $p(\pi^{\pm}, K^{+})\Sigma^{\pm}$ @ 1.37 GeV/c
 - \circ Θ^+ missing mass resolution : 1.4 MeV/c² (FWHM) (Expected)
 - Consistent Σ^{\pm} cross section (Measured)

 \Rightarrow More than 10 time higher sensitivity achieved.

Preliminary experimental result

- * No clear O⁺ peak structure observed
- Differential cross section : σ < 300 nb/sr @ 1.51-1.55 GeV/c²

(2° -15° @ Lab, 4° -40° @ CM)

67

- Total cross section : $\sigma < 300$ nb @ 1.54 GeV/c²
- \Leftrightarrow Theoretical calculation ($\sigma \sim 300-500 \text{ nb}$)
- Upper limit of width : $\Gamma < 1 \text{ MeV/c}^2 @ Fc$

* 1st step of J-PARC E19 successfully finished ! ⇒2nd step : 2 GeV/c beam data taking at K1.8 beam line

Future plan

68

• • •

Θ⁺ search Other exotic hadron search

2nd step beam time

Upper limit : < 0.3 μb @ 1.54 GeV/c²

Theoretical calculations : T. Hyodo, private communication

 $J^p=1/2^+, \Gamma_{\Theta^+}=1 MeV$

		P _{lab} = 1.92 GeV/c	P _{lab} = 2 GeV/c		
PS	Fs 500MeV	9.2 μb	9.8 μb		
	Fc 1800MeV	5.3 µb	4.9 μb		
PV	Fs 500MeV	0.51 μb	0.75 μb		
	Fc 1800MeV	0.29 μb	0.50 μb		
* Integrated over the whole solid angle					

<u>2 GeV/c beam</u>: the next step, take data & accumulate statistics.

Sensitivity = 75 nb/sr (lab) corresponds to an stringent limit to the decay width of Θ^+ : 1 MeV × (75 nb/sr / 300 nb/sr) < 0.2 MeV

Possibility

70

N* coupling $(g_{KN^*\Theta})$ CLAS data suggested : Mass ~2.4 GeV/c² \Rightarrow Hadron beam : Threshold = p_{π} ~2.5 GeV/c * Need higher momentum beam (K1.8 max: 2 GeV/c)

Possibility

N* coupling $(g_{KN^*\Theta})$ CLAS data suggested : Mass ~2.4 GeV/c² \Rightarrow Hadron beam : Threshold = p_{π} ~2.5 GeV/c * Need higher momentum beam (K1.8 max: 2 GeV/c)

Search for Θ^+ **in formation reaction**

P09-LOI, T. Nakano et al.

• $\underline{\mathbf{K}^+\mathbf{n}} \rightarrow \Theta^+$ $\rightarrow \mathbf{K_S}^0 \mathbf{p} \rightarrow \pi^+\pi^-\mathbf{p}$ $- \mathbf{p}(\mathbf{K}^+) = 417 (442) \text{ MeV/c}$ $- \text{ for } \mathbf{M}_{\Theta} = 1.53 (1.54) \text{ GeV/c}^2$ \Rightarrow **K1.1BR beam line** \mathbf{w} degrader • π^+, π^- & proton detection with 4π spectrometer

- Determine width from cross section
 - $\sigma(\mathbf{E}) = (\pi/4k^2) \Gamma^2/\{(\mathbf{E}-\mathbf{m})^2 + \Gamma^2/4\}$
 - $\sigma_{tot} = 26.4 \text{ x } \Gamma \text{ mb/MeV}$
- Spin measurement
 - Decay angular distribution : 1(1/2) or $1+3\cos^2\theta$ (3/2)?
Search for Θ^+ via the (K⁺, p) reaction

LOI, K. Tanida et al.

- Reaction process : $d(K^+, p)\Theta^+$ (have not been searched)
- Beam momentum : p_K ~1 GeV/c
 - p_K ~0.6 GeV/c: Magic mom
 - $p_K \sim 1 \text{ GeV/c} \Rightarrow q_{\Theta} \sim 120 \text{ MeV/c} @ 0^{\circ}$ ($p_p \sim 1.1 \text{ GeV/c}$)
- \Rightarrow K1.1 beam line
- Detection of p: SKS
 - High resolution: ~3 MeV/c²
- $d\sigma/d\Omega \sim 1 \mu b/sr (\Gamma_{\Theta} \sim 1 MeV/c^2)$ [Nagahiro & Hosaka]
- Background process

 (1 GeV/c, θ_p~0°)
 - $K^+p \rightarrow K^+p : 5 \text{ mb/sr}$
 - $K^+n \rightarrow K^0p : 1.5 \text{ mb/sr}$

\Rightarrow Need surrounding detector : Sideway type

To detect $\Theta^+ \rightarrow p \ K_s^0 \rightarrow p \ \pi^+ \ \pi^-$

73

Search for Θ^+ via the (K⁺, p) reaction

LOI, K. Tanida et al.

- **Reaction process :** $d(K^+, p)\Theta^+$ (have not been searched)
- Beam momentum : p_K ~1 GeV/c ٠
 - p_K ~0.6 GeV/c: Magic mom
 - $\mathbf{p}_{\mathrm{K}} \sim 1 \text{ GeV/c} \Rightarrow \mathbf{q}_{\Theta} \sim 120 \text{ MeV/c} @ 0^{\circ}$ (p_p~1.1 GeV/c)

 \Rightarrow K1.1 beam line

- **Detection of p: SKS** •
 - High resolution: ~3 MeV/c²
- $d\sigma/d\Omega \sim 1 \ \mu b/sr \ (\Gamma_{\Theta} \sim 1 \ MeV/c^2)$ [Nagahiro & Hosaka]
- **Background process** $(1 \text{ GeV/c}, \theta_{p} \sim 0^{\circ})$ - $K^+p \rightarrow K^+p : 5 \text{ mb/sr}$

 - $K^+n \rightarrow K^0p$: 1.5 mb/sr
- \Rightarrow Need surrounding detector : Sideway type To detect $\Theta^+ \rightarrow p K_s^0 \rightarrow p \pi^+ \pi^-$

74

In FUTURE...

75

Other pentaquarks

-
$$\Xi_5^{--}(1862)$$
 : ddssū
via K⁻n → Ξ^{--} K⁺ @ p_{th} = 2.4 GeV/c
- $\Theta_c^0(3100)$: uuddc
via p p → p p Θ_c^0 X @ p_{th} = 12.3 GeV/c

★ Experiment at High Momentum (Separated) beam line
⇒ For future hadron programs, we need more new beam lines and multi-purpose detector.

76

J-PARC Sunrise, last day of beam time 2010/11/16