π中間子ビームを用いた K中間子原子核の実験的研究

2015/05/18 Yudai Ichikawa (JAEA) 第8回 J-PARC Hadron salon

Contents

- Introduction
 - K⁻pp bound state
- J-PARC E27 experiment
 - $d(\pi^+, K^+)$ reaction
 - Experimental set up (K1.8 beam line + SKS + RCA)
 - Coincidence measurement (with RCA)
- Analysis result & Discussion
 - Inclusive analysis
 - Coincidence analysis
- Future plan
- Conclusion

Introduction

K⁻pp bound state

- Total charge:+1, $I = \frac{1}{2}$, $J^{P} = 0^{-}$.
- The bound state was expected due to the KN strong interaction, which is strong attractive in I = 0.
- It has a rich information such as the K
 K
 N strong interaction in sub-threshold region and behavior of Λ(1405) in many body system.
- It makes high density (?)

Past experiments for the K⁻pp

T. Yamazaki et al., PRL 104, 132502 (2010).

- FINUDA experiment M. Agnello et al., PRL 94, 212303 (2005).
 - Stopped K⁻ absorption on 6,7 Li and 12 C.
 - Invariant mass of back-to-back Λp pairs.
 - BE: 115 ⁺⁶₋₅(stat.)⁺³₋₄ (syst.)MeV, Γ: 67 ⁺¹⁴₋₁₁(stat.)⁺²₋₃ (syst.)MeV
- **DISTO** experiment
 - − pp→K⁺Ap reaction at $T_p=2.85$ GeV.
 - K⁺ missing mass and Λp invariant mass.
 - BE: 103 ±3(stat.) ±5(syst.)MeV, Γ: 118 ±8(stat.) ±10(syst.)MeV
- **OBELIX** experiment
 - -p annihilation reaction on ⁴He.
 - (pp π^{-}) invariant mass.
 - BE: 151.0 ±3.2(stat.) ±1.2(syst.)MeV, Γ: < 33.9 ±6.2 MeV

5

Comparison BE and Γ of the K⁻pp

- Theoretical values of BE and Γ strongly depend on the KN interaction and calculation method.
- Theoretical values can't reproduce the experimental ones.
- Experimental values are not consistent with each other.

Current situation of the K⁻pp

- FINUDA experiment (stopped K⁻ on ^{6,7}Li and ¹²C)
 - There are theoretical criticism V. Magas, et al., PRC 74, 025206 (2006). (FSI of p and Λ + quai-free two nucleon absorption).
 - Reaction mechanism is not clear.
- DISTO experiment ($pp \rightarrow pK^+\Lambda$ at $T_p = 2.85$ GeV)
 - Ambiguity of the *DEV* spectrum.
 = ambiguity of the background assumption (pK⁺Λ 3 body phase space reaction)

- It should be an additional background such as N* production.
- OBELIX experiment (p annihilation on ⁴He)
 - They did not observe Λ peak directly ((pp π^-) invariant mass).
 - Reaction mechanism is not clear. $\Lambda p\pi$ threshold cusp (?)

Current situation of the K⁻pp

- FINUDA experiment (stopped K⁻ on ^{6,7}Li and ¹²C)
 - There are theoretical criticism V. Magas, et al., PRC 74, 025206 (2006). (FSI of p and Λ + quai-free two nucleon absorption).
 - Reaction mechanism is not clear.
- DISTO experiment ($pp \rightarrow pK^+\Lambda$ at $T_p = 2.85$ GeV)

 $pp \rightarrow N*p$ $\downarrow K^+\Lambda$

s N* production. on ⁴He) invariant mass). hold cusp (?)

- DISTO experiment ($pp \rightarrow pK^+\Lambda$ at $T_p = 2.85$ GeV)
 - Ambiguity of the *DEV* spectrum.
 = ambiguity of the background assumption (pK⁺Λ 3 body phase space reaction)

- It should be an additional background such as N* production.
- OBELIX experiment (p annihilation on ⁴He)
 - They did not observe Λ peak directly ((pp π^-) invariant mass).
 - Reaction mechanism is not clear. $\Lambda p\pi$ threshold cusp (?)

- DISTO experiment ($pp \rightarrow pK^+\Lambda$ at $T_p = 2.85$ GeV)
 - Ambiguity of the DEV spectrum.
 - = ambiguity of the background assumption
 (pK⁺Λ 3 body phase space reaction)

- It should be an additional background such as N* production.
- OBELIX experiment (p annihilation on ⁴He)
 - They did not observe Λ peak directly ((pp π^-) invariant mass).
 - Reaction mechanism is not clear. $\Lambda p\pi$ threshold cusp (?)

- DISTO experiment (pp
 - Ambiguity of the *DEV* spec
 ambiguity of the backgro
 (pK⁺Λ 3 body phase space)
 - It should be an additional k

- Fig. 3. 5 prongs. $p\pi^-$ IM distribution for all the events (a), for the events in the C region (b) and in A+B region (c). The grey histograms are the experimental phase-space-like $p\pi^+$ distributions. The vertical lines indicate the Λ mass, 1115 MeV.
- OBELIX experiment (p annihilation on ⁴He)
 - They did not observe Λ peak directly ((pp π^-) invariant mass).
 - Reaction mechanism is not clear. $\Lambda p\pi$ threshold cusp (?)

Requirement of the new experiment

• Target

- It is better to use lighter target to reduce FSI.

- Reaction
 - We should know the reaction mechanism.
 - Background reaction should be controlled.
- Measurement
 - Exclusive or semi-exclusive measurement is important for the sensitivity of the K⁻pp.

Contents

- Introduction

 K⁻pp bound state
- J-PARC E27 experiment
 - $d(\pi^+, K^+)$ reaction
 - Experimental set up (K1.8 beam line + SKS + RCA)
 - Coincidence measurement (with RCA)
- Analysis result & Discussion
 - Inclusive analysis
 - Coincidence analysis
- Future plan
- Conclusion

J-PARC E27 experiment

$d(\pi^+, K^+)$ reaction

- K⁻pp is expected to be produced as a $\Lambda(1405)$ doorway.
- Main background is quasi-free hyperon (Λ , $\Sigma^{+/0}$) and hyperon resonance (Λ (1405), Σ (1385)^{+/0}) production.
 - Elementary cross sections were measured. (bubble chamber)

Λ(1405) elementary cross section

• $\pi^- p \rightarrow K^0 \Lambda(1405)$ reaction was measured by using hydrogen bubble chamber at 1.69 GeV/c. ($\pi^+ n \rightarrow K^+ \Lambda(1405)$ cross section should be same assuming the isospin symmetry. We know the elementary cross section of $\Lambda(1405)$.)

Experimental setup

- $[d(\pi^+, K^+) \text{ reaction at } p_{\pi} = 1.69 \text{ GeV}/c]$
- K1.8 beam line spectrometer
 - 1.69 GeV/c π^+ beam
 - $\Delta p/p \sim 2 \times 10^{-3}$
- SKS spectrometer
 - 0.8 1.3 GeV/c for $K^{\scriptscriptstyle +}$
 - $-\Delta p/p \sim 2 \times 10^{-3}$
 - ΔΩ ~ 100 msr
- Target
 - Liquid deuterium

Simulated inclusive missing-mass spectrum

- There are many quasi-free Y^(*) productions (background).
 - Estimated using the elementary cross sections of the $\pi^+p \rightarrow K^+X$ and $\pi^-p \rightarrow K^0X$ (for $\pi^+n \rightarrow K^+X$) reactions with deuteron wave-function.

⁽Bonn potential)

Simulated inclusive missing-mass spectrum

- There are many quasi-free Y^(*) productions (background).
 - Estimated using the elementary cross sections of the $\pi^+p \rightarrow K^+X$ and $\pi^-p \rightarrow K^0X$ (for $\pi^+n \rightarrow K^+X$) reactions with deuteron wave-function.

(Bonn potential)

K⁻pp signal will be hidden by quasi-free processes at inclusive spectrum.

Range counter array (RCA) for the coincidence measurement

- RCA is installed to measure the proton from the K⁻pp. - K⁻pp $\rightarrow \Lambda p \rightarrow p\pi^-p$; K⁻pp $\rightarrow \Sigma^0 p \rightarrow p\pi^-\gamma p$; K⁻pp $\rightarrow Yp\pi \rightarrow p\pi p\pi + (etc.)$
- We suppress the QF background by tagging a proton.
 Seg2 and 5 are free from QF background.
- More strongly suppress by tagging two protons.

Range counter array (RCA)

- 6units
- 5layers (1+2+2+5+2 cm) of plastic scintillator.
- TOF: 50 cm, θ_{xz}: 39°- 122°
- Momentum acceptance of proton: 135 800 MeV/c
- Geometrical coverage: ~26%

Requirement of the new experiment

- Target
 - It is better to use lighter target to reduce FSI.
 - **E27** \Rightarrow We use the liquid deuterium target.
- Reaction
 - We should know the reaction mechanism.
 - E27 \Rightarrow The K⁻pp is expected to be produced as a $\Lambda(1405)$ doorway.
 - Background reaction should be controlled.
 - E27 ⇒ The main BG is quasi-free hyperon (resonance) productions.
- Measurement
 - Exclusive or semi-exclusive measurement is important for the sensitivity of K⁻pp.

 \Rightarrow We carried out the coincidence experiment with RCA.

Beam time in June 2012.

Beam time allocated for E27 experiment
 – From 9th June to 1st July.

Reaction	Target	Thickness	P_{beam}	Beam intensity	N_{beam}
		$[g/cm^2]$	[GeV/c]	[pion/spill]	
$d(\pi^+, K^+)$	LD_2	1.99	1.69	$3.0-3.3 \times 10^{6}$	3.3×10^{11}
$p(\pi^+, K^+)$	LH_2	0.85	1.69	3.0×10^{6}	7.6×10^{9}
$p(\pi^+, K^+)\Sigma^+$	LH_2	0.85	1.58	3.0×10^{6}	1.2×10^{9}
beam-through	none	_	0.9	$\sim 10^4$	$\sim 10^5$

Contents

- Introduction
 - K⁻pp bound state
- J-PARC E27 experiment
 - $-d(\pi^+, K^+)$ reaction
 - Experimental set up (K1.8 beam line + SKS + RCA)
 Coincidence measurement (with RCA)
- Analysis result & Discussion
 - Inclusive analysis
 - Coincidence analysis
- Future plan
- Conclusion

Analysis result & Discussion

Spectrometer performance (Calibration) $p(\pi^+, K^+)\Sigma^+$ at 1.58 GeV/*c*

K⁺ momentum is almost same as the d(π^+ , K⁺)K⁻pp reaction.

• Missing mass resolution of Σ^+ $\Delta M = 2.8 \pm 0.1 \text{ MeV}/c^2$ (FWHM)

Missing mass resolution of the d(π⁺, K⁺)K⁻pp reaction
 ΔM = 2.7±0.1 MeV/c²(FWHM)

Coincidence analysis to measure the proton (pair) from the decay of the K⁻pp

Analysis of E27 experiment

- Inclusive analysis
 - We only use the information of the π +, K+ momenta to search the K-pp.
 - In this analysis, there are large background (quasifree).
- Coincidence analysis
 - We additionally measure the proton (pair) from the decay of the K⁻pp.

$d(\pi^+, K^+)$ at 1.69 GeV/c (Inclusive spectrum)

- It is difficult to identify the K⁻pp from the inclusive spectrum due to the QF hyperon (Y^*) productions.
- An overall structure of the spectrum is well reproduced expect for two distinct differences.

- $\Sigma N \operatorname{cusp}(2.13 \, \mathrm{GeV/c^2})$ and Y^* peak position.

$d(\pi^+, K^+)$ at 1.69 GeV/c (Inclusive spectrum)

Y* peak; data = 2400.6 ± 0.5(stat.) ± 0.6(syst.) MeV/c² sim = 2433.0 $^{+2.8}_{-1.6}$ (syst.) MeV/c² ``shift" = -32.4 ± 0.5(stat.) $^{+2.9}_{-1.7}$ (syst.) MeV/c²

Y* peak positions are shifted to the low mass side for all scattering angles.

MM_d [GeV/c²]

HADES experiment for $\Lambda(1405)$

$$\begin{array}{c} p+p \xrightarrow{3.5GeV} \Lambda(1405) + K^+ + p \\ & \searrow \Sigma^{\pm} + \pi^{\mp} \\ & & \searrow \pi^{\pm} + n \end{array}$$

The peak position of $\Lambda(1405)$ is shifted to low-mass side.

M = 1385 MeV/ c^2 , Γ = 50 MeV S-wave Breit Wigner function

ΣN cusp (Inclusive spectrum)

- A cusp at ΣN threshold is prominent in the forward angle.
 - $-M_0 = 2130.5 \pm 0.4$ (stat.) ± 0.9 (syst.) [MeV/ c^2]
 - $-\Gamma = 5.3^{+1.4}_{-1.2}$ (stat.)^{+0.6}_{-0.3} (syst.) [MeV]
 - $d\sigma/d\Omega = 10.7 \pm 1.7 \ \mu b/sr$

H. Machner et al., NPA 901, 65 (2013).

Previous measurement (ΣN cusp)

- The ΣN cusp structure was observed in the d(K⁻, π⁻), d(π⁺, K⁺) and p(p, K⁺) reaction.
 - In the d(K⁻, π^-) and d(π^+ , K⁺) reaction

 $\begin{array}{ccc} \text{K}^{-}+ (\text{NN})_{d} \rightarrow (\text{K}^{-}\text{N}) + \text{N} & \text{R.H. Dalitz and B.W. Downs, PR 111, 967 (1958).} \\ & & \downarrow \\ & (\pi^{-}+\Sigma) + \text{N} \rightarrow \pi^{-}+ (\Sigma+N) \rightarrow \pi^{-}+ \Lambda + p \end{array}$

- In the p(p, K⁺) reaction, reaction mechanism is not clear.
- There was no experiment to observe the ΣN cusp in the inclusive spectrum in the d(K⁻, π⁻) and d(π⁺, K⁺) reactions.
 - We can directly compare the inclusive spectrum with the theoretical spectrum.
 - Our MM resolution (3.2 MeV) is better than previous measurement.

do/dm(Ap) (arb. units)

H. Machner et al., NPA 901, 65 (2013).

Previous measurement (ΣN cusp)

The ΣN cusp structure was observed in the d(K⁻, π⁻), d(π⁺, K⁺) and p(p, K⁺) reaction.
 In the d(K⁻, π⁻) and d(π⁺, K⁺) reaction

Further detailed theoretical studies including the present data would reveal the information on the ΣN-ΛN coupling strength and pole position.

- There was no experiment to observe the ΣN cusp in the inclusive spectrum in the d(K⁻, π⁻) and d(π⁺, K⁺) reactions.
 - We can directly compare the inclusive spectrum with the theoretical spectrum.
 - Our MM resolution (3.2 MeV) is better than previous measurement.

Coincidence analysis

Particle identification (PID) of the RCA

• Emitted proton is selected by RCA.

Information – Stopping layer (range), 1/β, PID parameter

[PID parameter] PID $\equiv ((dE_i + dE_{i-1})^{\alpha} - dE_i^{\alpha}) \times \cos\theta$

- i: stopping layer
- α (parameter) ~ 1.75
- θ is incident angle for RCA.

PID parameter corresponds to the range of the previous layer of the stopping one.

Range counter array(RCA) for the coincidence measurement

- RCA is installed to measure the proton from the K⁻pp. - K⁻pp $\rightarrow \Lambda p \rightarrow p\pi^-p$; K⁻pp $\rightarrow \Sigma^0 p \rightarrow p\pi^-\gamma p$; K⁻pp $\rightarrow Yp\pi \rightarrow p\pi p\pi + (etc.)$
- We suppress the QF background by tagging a proton.
 Seg2 and 5 are free from QF background.
- More strongly suppress by tagging two protons.

One-proton coincidence analysis

- Seg2 and 5 (RCA) are almost free from the QF backgrounds.
- Excess (~2.13 GeV/c²) is clearly observed. (ΣN cusp & conversion)
- Broad enhancement (~2.3 GeV/c²) is observed.

(``K-pp''-like structure)

Two-proton coincidence analysis

- 2 proton coincidence spectra show the same tendency as 1 proton coincidence spectra.
 - Excess (~2.13 GeV/c², ΣN cusp and conversion) and
 Broad enhancement (~2.3 GeV/c², ``K⁻pp''-like structure).

ΣN cusp (two-proton coincidence)

- The ΣN cusp structure is also observed in the 2p spectrum (Λp) for the forward scattering angle (2°-8°).
- The peak position, width and cross section are consistent with the inclusive one.

< 2p coincidence result>

 $\pi^+d \rightarrow K^+W, W \rightarrow \Lambda p$

<Inclusive analysis result>

$$M0 = 2130.5 \pm 0.4(stat) \pm 0.9(sys)[MeV/c^{2}]$$

$$\Gamma = 5.3^{+1.4}_{-1.2}(stat)^{+0.6}_{-0.3}(sys)[MeV]$$

$$d\bar{\sigma}/d\Omega = 10.7 \pm 1.7 \ \mu\text{b/sr}$$

``K⁻pp''-like structure(coincidence)

- Broad enhancement ~2.28 GeV/c² has been observed in the Σ⁰p spectrum.
 - Mass: 2275 $^{+17}_{-18}$ (stat.) $^{+21}_{-30}$ (syst.) MeV/ c^2 (BE: 95 $^{+18}_{-17}$ (stat.) $^{+30}_{-21}$ (syst.) MeV)
 - Width: $162 + \frac{87}{-45}$ (stat.) $+ \frac{66}{-78}$ (syst.) MeV
 - $d\sigma/d\Omega_{K^-pp"\to\Sigma^0 p} = 3.0 \pm 0.3 \text{ (stat.) }^{+0.7}_{-1.1} \text{ (syst.) } \mu \text{b/sr}$
 - $\Gamma_{\Lambda p}/\Gamma_{\Sigma^0 p} = 0.92 \stackrel{+0.16}{_{-0.14}} (\text{stat.}) \stackrel{+0.60}{_{-0.42}} (\text{syst.})$. [Theoretical value: ~1.2]

<1 proton coincidence probability>

Discussion on the ``K⁻pp''-like structure 1

- Obtained mass (BE ~ 100 MeV) and broad width are not inconsistent with the FINUDA and DISTO values.
 - Theoretical calculation for the K⁻pp is difficult to reproduce such a deep binding energy about 100 MeV.
 - The other possibilities?
 - A dibaryon as $\pi\Lambda N \pi\Sigma N$ bound states? H. Garcilazo and A. Gal, NPA 897, 167 (2013). (It should not decay to the Λp mode because of I = 3/2.)
 - Λ*N bound state? T. Uchino *et al.*, NPA **868**, 53 (2011).
 - A lower πΣN pole of the K⁻pp?
 A. Dote, T. Inoue and T. Myo, PTEP 2015 4, 043D02 (2015).
 (The K⁻pp might have the double pole structure like Λ(1405).)
 - Partial restoration of chiral symmetry on the $\overline{K}N$ interaction?

S. Maeda, Y. Akaishi and T. Yamazaki, Proc. Jpn. B 89, 418 (2013).

Discussion on the ``K⁻pp''-like structure 1

 Obtained mass (BE ~ 100 MeV) and broad width are not inconsistent with the FINUDA and DISTO values.

Discussion on the ``K⁻pp''-like structure 2

- Sticking probability of the $\Lambda(1405)$ (Elementary: 36.9 μ b/sr)
 - − $(d\sigma/dΩ_{K^{-}pp^{"}\rightarrow\Sigma^{0}p})/(d\sigma/dΩ_{\Lambda(1405)})$ = 8.2 %
 - $(d\sigma/d\Omega_{K^{-}pp^{"}\rightarrow\Lambda p})/(d\sigma/d\Omega_{\Lambda(1405)}) = 6.0 \%$
 - $(d\sigma/d\Omega_{K-pp''})/(d\sigma/d\Omega_{\Lambda(1405)}) \gtrsim 14.2\% \quad \text{(for the } Y^* : \gtrsim 3.1\%\text{)}$
 - Theoretical value is about 1%.

Incorrect assumption of the Λ(1405) doorway (?) and/or the other possibilities (?)

47

Future plan

To confirm the "K-pp"-like structure

- Further experiment is planed by using **Hyp-TPC** + KURAMA Spectrometer and same reaction (d(π^+ , K⁺) reaction).
 - E27 experiment = RCA + SKS spectrometer
 - RCA \rightarrow Hyp-TPC(Improve to the large acceptance!! (About 4 times larger)!!)
 - SKS \rightarrow KURAMA (Improve to the large acceptance (About 2 times larger)!!)
 - In the further experiment, we carried out the perfect experiment to detect all particles in high statistic and determine the spin and parity of the K⁻pp-like structure!!
 - We are going to search further kaonic nucleus by using this detector system with ³He(π⁺,K⁺)K⁻ppp, d(K⁻,K⁰)K⁻K⁻pp, ³He(K⁻, K⁺) K⁻K⁻ppn reactions.

Conclusion

- The K⁻pp bound state are not well explored, yet. We have searched for the K⁻pp bound state using the d(π⁺, K⁺) reaction at 1.69 GeV/c.
- We have measured the inclusive missing-mass spectrum at 1.69 GeV/c in high statistic and energy resolution for the first time.
- The overall structure is well reproduced with a simple quasi-free picture except for two peculiar deviations.
 - The centroid of the broad bump structure in Y^{*} region was shifted to low mass side, by -32.4 ± 0.5 (stat.) $^{+2.9}_{-1.7}$ (syst.) MeV/ c^2 .
 - We observed the ΣN cusp in the inclusive spectrum for the first time in this reaction.
- We have observed a mass distribution of the ``K⁻pp''-like structure in the $\pi^+d \rightarrow K^+$ ``K⁻pp'', ``K⁻pp'' \rightarrow \Sigma^0p mode in two-proton coincidence.

- Mass: $2275 {}^{+17}_{-18}$ (stat.) ${}^{+21}_{-30}$ (syst.) MeV/ c^2 (BE: $95 {}^{+18}_{-17}$ (stat.) ${}^{+30}_{-21}$ (syst.) MeV)

- Width: $162 {+87 \atop -45}$ (stat.) ${+66 \atop -78}$ (syst.) MeV