KEK理論センター・J-PARC分室 土手 昭伸

J-PARC分室理論活動「ハイパー核共同研究ミーティング」 平成24年3月1日 東海一号館

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

<u>2. 変分法による、" K-pp"の構造研究</u>

<u>3. 結合チャネル複素スケーリング法による、"K-pp"の研究(進行中)</u>

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

<u>2. 変分法による、" K-pp" の構造研究</u>

3. 結合チャネル複素スケーリング法による、"Kpp"の研究(進行中)

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

3. 結合チャネル複素スケーリング法による、"Kpp"の研究(進行中)

Y. Akaishi and T. Yamazaki, PRC 52 (2002) 044005

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

ppnK⁻ ~ ¹¹CK⁻ 現象論的 K^{bar}N 相互作用 (AY potential) G-matrix法 非常に深い束縛状態 ... E(K) ~ 100 MeV 狭い崩壊幅 ... Γ(πY) ~ 20 – 40 MeV 高密度状態 ... ρ_{ave} ~ 2 – 4 ρ₀ 原子核構造の変化

<u>2. 変分法による、" K-pp" の構造研究</u>

3. 結合チャネル複素スケーリング法による、"Kpp"の研究(進行中)

(自分がやってきた・やっている)

1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究

ppnK⁻ ~ ¹¹CK⁻ 現象論的 K^{bar}N 相互作用 (AY potential) G-matrix法

非常に深い束縛状態 ... E(K) ~ 100 MeV 狭い崩壊幅 ... Γ(πY) ~ 20 – 40 MeV 高密度状態 ... ρ_{ave} ~ 2 – 4 ρ₀ 原子核構造の変化

<u>2. 変分法による、" K-pp"の構造研究</u>

"K⁻pp" ... a prototype of K^{bar} nuclei, *K^{bar}NN-πYN (J^π=0⁻, T=1/2)* カイラルSU(3)理論に基づくK^{bar}N相互作用 <u>浅い束縛状態</u> … B. E. = 20 ± 3 MeV 広い崩壊幅 … Γ(πY) = 40 – 70 MeV 通常核密度程度 … R_{NN} ~ 2 fm → ~ρ₀

3. 結合チャネル複素スケーリング法による、"Kpp"の研究(進行中)

1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究

ppnK⁻ ~ ¹¹CK⁻ 現象論的 K^{bar}N 相互作用 (AY potential) G-matrix法

非常に深い束縛状態 E(K) ~ 100 MeV 狭い崩壊幅 ... Γ(πY) ~ 20 – 40 MeV 高密度状態ρ_{ave} ~ 2 – 4 ρ₀ 原子核構造の変化

<u>2. 変分法による、"K-pp"の構造研究</u>

"Kpp" ... a prototype of K^{bar} nuclei, *K^{bar}NN-πYN (J^π=0⁻, T=1/2)* カイラルSU(3)理論に基づくK^{bar}N相互作用

浅い束縛状態 … B. E. = 20 ± 3 MeV 広い崩壊幅 … Γ(πY) = 40 – 70 MeV 通常核密度程度 … R_{NN} ~ 2 fm → ~ρ₀

<u>3. 結合チャネル複素スケーリング法による、"K-pp"の研究(進行中)</u>

 $K^{bar}NN-\pi YN (J^{\pi}=0^{-}, T=1/2)$

 π YN three-body dynamicsの影響 \rightarrow 結合チャネル計算 共鳴状態の適切な取り扱い・構造解析 \rightarrow 複素スケーリング法

1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究

πYN three-body dynamicsの影響 → 結合チャネル計算 共鳴状態の適切な取り扱い・構造解析 → 複素スケーリング法

<u>1. 反対消化分子動力学法 (AMD) に 1.2 部</u>

ppnK⁻~¹¹CK⁻ 現象論的 *K^{bar}N* 相互作用 (AY potential) G-matrix法

2. 変分法による、" K-pp" の構造研究

"K-pp" … a prototype of K^{bar} nuclei, *K^{bar}NN-πYN (J^π=0⁻, T=1/2)* カイラルSU(3)理論に基づくK^{bar}N相互作用

<u>3. 結合チャネル複素スケーリング法による、" K-pp"の研究(進行中)</u>

 $K^{bar}NN-\pi YN (J^{\pi}=0^{-}, T=1/2)$

 π YN three-body dynamicsの影響 \rightarrow 結合チャネル計算 共鳴状態の適切な取り扱い・構造解析 \rightarrow 複素スケーリング法

1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究

ppnK⁻ ~ ¹¹CK⁻ 現象論的 K^{bar}N 相互作用 (AY potential) G-matrix法

非常に深い束縛状態 ... E(K) ~ 100 MeV 狭い崩壊幅 ... Γ(πY) ~ 20 – 40 MeV 高密度状態ρ_{ave} ~ 2 – 4 ρ₀ 原子核構造の変化

<u>2. 変分法による、"K-pp"の構造研究</u>

"K-pp" ... a prototype of K^{bar} nuclei, *K^{bar}NN-πYN (J^π=0⁻, T=1/2)* カイラルSU(3)理論に基づくK^{bar}N相互作用

浅い束縛状態 … B. E. = 20 ± 3 MeV 広い崩壊幅 … Γ(πY) = 40 – 70 MeV 通常核密度程度 … R_{NN} ~ 2 fm → ~ρ₀

3. 結合チャネル複素スケーリング法による、"K-pp"の研究(進行中)

 $K^{bar}NN-\pi YN (J^{\pi}=0^{-}, T=1/2)$

πYN three-body dynamicsの影響 → 結合チャネル計算 共鳴状態の適切な取り扱い・構造解析 → 複素スケーリング法 $K^{bar}N$ -πΣ ($J^{\pi}=1/2^{-}$, I=0) ... "Λ(1405)"

カイラルSU(3)理論に基づく、 空間表示ガウス型 K^{bar}N/πΣ相互作用の構築 散乱振幅の計算・ポールの解析

<u>1. 反対消化分子動力学法 (AMD) による、軽い K原子核の系統的研究</u>

ppnK⁻ ~ ¹¹CK⁻ 現象論的 K^{bar}N 相互作用 (AY potential) G-matrix法

<u>2. 変分法による、" K-pp"の構造研究</u>

"K-pp" ... a prototype of K^{bar} nuclei, *K^{bar}NN-πYN (J^π=0⁻, T=1/2)* カイラルSU(3)理論に基づくK^{bar}N相互作用 非常に深い束縛状態 … E(K) ~ 100 MeV 狭い崩壊幅 … Γ(πY) ~ 20 – 40 MeV 高密度状態 … ρ_{ave} ~ 2 – 4 ρ₀ 原子核構造の変化

> A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PLB 590, 51 (2004); PRC 70, 044313 (2004).

<u>浅い束縛状態</u> … B. E. = 20 ± 3 MeV 広い崩壊幅 … Γ(πY) = 40 – 70 MeV 通常核密度程度 … R_{NN} ~ 2 fm → ~ρ₀

> A. D., T. Hyodo and W. Weise, PRC 79, 014003 (2009).

<u>3. 結合チャネル複素スケーリング法による、"K-pp"の研究(進行中)</u>

 $K^{bar}NN-\pi YN (J^{\pi}=0^{-}, T=1/2)$

πYN three-body dynamicsの影響 → 結合チャネル計算 共鳴状態の適切な取り扱い・構造解析 → 複素スケーリング法 $K^{bar}N-\pi\Sigma (J^{\pi}=1/2^{-}, I=0) \dots (\Lambda(1405))$

カイラルSU(3)理論に基づく、 空間表示ガウス型 K^{bar}N/πΣ相互作用の構築 散乱振幅の計算・ポールの解析

A. D., T. Myo and T, Inoue, Proc. of "Baryons' 10"

A. T. Kruppa, R. Suzuki and K. Katō, PRC 75, 044602 (2007)

✓ Chiral SU(3) potential (KSW potential)

 $V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}(\omega_{i} + \omega_{j})\sqrt{\frac{M_{i}M_{j}}{s\,\omega_{i}\,\omega_{j}}} g_{ij}(r)$

 ω_i : meson energy

N. Kaiser, P. B. Siegel and W. Weise, NPA 594, 325 (1995)

空間座標・ガウス型 $g_{ij}(r) = \frac{1}{\pi^{3/2} a_{ij}^{3}} \exp\left[-\left(r/a_{ij}\right)^{2}\right]$

✓ Kinematics : Semi-rela.

$$H_{SR} = \sum_{c=K^{bar}N,\pi\Sigma} \left[\sqrt{m_c^2 + \mathbf{p}^2} + \sqrt{M_c^2 + \mathbf{p}^2} \right] |c\rangle \langle c| + V_{KSW}$$

✓ ポテンシャルのレンジパラメータは、I=0 KbarN散乱長を再現するように決定。

Exp. : $a^{I=0}_{KbarN} = -1.70 + i 0.68 \text{ fm}$ (A. D. Martin)

$\frac{I=0 \ K^{bar}N \ scattering \ length}{and \ the \ range \ parameters \ of \ KSW \ potential} f_{\pi}=90 \ MeV$

	Kinematics	Non-rela.			Semi-rela.
	KSW potential	Original	Non-rela. v1	Non-rela. v2	Original
Range	a(KbarN)	0.593	0.576	0.574	0.487
parameter [fm]	a(πΣ)	0.541	0.725	0.751	0.457
KbarN Scatt.	Re	-1.701	-1.700	-1.700	-1.703
leng. [fm]	Im	0.679	0.677	0.687	0.677

By searching the $K^{bar}N$ and $\pi\Sigma$ range parameters independently, we can find the range parameters to reproduce the experimental value of I=0 $K^{bar}N$ scattering length.

Exp. : $a^{I=0}_{KbarN} = -1.70 + i 0.68 \text{ fm}$ (A. D. Martin)

<u>Scattering amplitude</u> <u>... KSW org. – Semi rela.</u>

Phase shift (πΣ)

Pole position of $K^{bar}N-\pi\Sigma$ (I=0) system

Fig. 5 Pole positions of I=0 scattering amplitude

HW: PRC 77, 035204 (2008)

原田さんとの共同研究の可能性

を調べられないか?

K^{bar}N-πΛ(?) 散乱振幅を利用して。。。。

