Neutron star core

= "An interesting neutron-rich hypernuclear system"

 $x_{iY} = g_{iY}/g_{iN} (i = \sigma, \omega, \rho)$ Coupling constant ratio; traditional neutron star quark-hybrid n (1) N+e **x**,1=0.6 $U_{\Sigma} < 0$ N+e+n 1_m=2/9 1_=1, Ρ 0.1 n.p.e. u ē-× $U_{\Xi} < 0$ Λ,Σ,Ξ,. neutron star with pion condensate 0.01 E Σ^{-} Fe Π (2) x_{a1}=0.6 x_{a2}-1 x₃-x₂ $U_{\Sigma} > 0$ color-superconducting 10⁶ g/cm ³ strange quark matter (u,d,s quarks) р 10 11 g/cm 3 0.1 $U_{\Xi} < 0$ 2SC CFL CSL CFL-K⁺ gCFL CFL-K⁰ LOFF CFL-π⁰ 2SC 10¹⁴ g/cm³ ۶ĩ Hydrogen/He atmosphere 0.01 К–, .. strange star nucleon star $U_{\Sigma} > 0$ Π (8) x_{ea}=0.6 R ~ 10 km Ρ $U_{\Xi} > 0$ r_{e2}-1 0.1 [F. Weber, PPNP 54(2005)193] ۶ĩ 0.01 K-Δ. 2 8 Ú) 1 [R. Knorren, M. Prakash, P.J.Ellis, PRC52(1995)3470]

Hyperon-mixing

Cassiopeia A nebula NASA/CXC/SAO.

Thermal evolution of neutron stars

ストレンジネス核物理の展開

by E.Hiyama

"QCD,核力から核構造へ"と"核構造からQCD,核力へ"

Dynamics in Strangeness Nuclear Systems

▶ ハイペロン混合による多彩な振る舞い
 ▶ 核内における3体力 (3BF)の役割

<u>S = -1 の原子核</u>

Hypernuclear Production Reactions

<u>A s.p. potential and A spin-orbit splitting in ${}^{89}_{\Lambda}Y$ </u>

7

<u> Σ^{-} spectrum by (π^{-},K^{+}) reaction at 1.2GeV/c</u>

≻SU(6)sp symm. → Strongly spin-isospin dependence, $V_{ALS}(\Lambda N) \sim V_{LS}(\Lambda N)$

Overbinding Problem on s-shell Hypernuclei

Dalitz et al., NP **B47** (1972) 109.

g-matrix calc. with $\Lambda N-\Sigma N(D2)$

Akaishi et al., PRL 84 (2000) 3539.

"The 0⁺-1⁺ difference is not a measure of AN spin-spin interaction." by B.F. Gibson

	Hyperon-mixi	ng		Σ_{\uparrow} Σ_{\uparrow}	Σ	
(unit in Me	$_{\rm eV)}$ (⁴ _{\Lambda} H)	4 - Λ -	He	$ \begin{bmatrix} \mathbf{p}_{\downarrow} & \mathbf{p}_{\uparrow} & \mathbf{p}_{\downarrow} & \mathbf{p}_{\uparrow} \end{bmatrix} \mathbf{p}_{\uparrow} $ $ \mathbf{n}_{\downarrow} & \boldsymbol{\Lambda}_{\uparrow} & \mathbf{p}_{\downarrow} & \mathbf{p}_{\uparrow} $	+ $\prod_{n_{\downarrow}} \Lambda_{\uparrow} p_{\downarrow} p_{\uparrow}$	
0.0 1 ⁺	1+ 1.08	1^+ 1^+ -1.03 -1.04	1^+ 1^+	$^{1^{+}}_{-0.68}$ $^{1^{+}}_{-0.70}$	$-0.68 -0.70 \\ 1^+ 1^+$	
-1.24	spin-spin $\stackrel{-1.08}{\downarrow}$ 0.38	-1.04 0 ⁺ Coherent couplin	-1.20 $-1.21g -1.520+-2.10$	-1.43 g 0^+ Coherent coupling	-0.97 0 ⁺ Coherent coupling	
-2.39 0 ⁺	-2.28 0 ⁺	-2.27 0 ⁺	0+	-2.18 0 ⁺	-2.51 0 ⁺	
Exp.	phenomenological $V_{AN} + V_{ANN}$ $\overline{V} = 6.20$	$P_{\mathrm{coh},\Sigma} = 1.9\%$	$P_{\rm coh,\Sigma} = 0.7\%$	$P_{\mathrm{coh},\Sigma} = 0.9\%$	$P_{\mathrm{coh}.\Sigma} = 2.0\%$	
		D2	SC97e(S)	SC97f(S)	SC89(S)	
	VMC	Breuckner-Hartree-Fock				
	R. Sinha, Q.N.Usmani, NPA684(2001)586c		Y. Akaishi, T.Harada, S.S PRL84(1	hinmura, Khun Swe Myi 2000)3539	nt,	

<u>The Λ - Σ coupling effects in neutron matter</u>

First production of neutron-rich Λ hypernuclei

 $^{10}B(\pi^-, K^+)^{10}_{\Lambda}Li$ A spectrum by DCX (π^-, K^+) reaction at 1.2GeV/c

(π^-, K^+) – Double Charge Exchange (DCX) Reaction

<u>A spectrum by DCX (stopped K⁻, π ⁺) reactions</u>

If the Σ^- admixture probability of ~0.6 % is <u>assumed</u> in {}^{12}_{\Lambda}Be, Early we demonstrate the (stopped K⁻, π^+) spectrum on a ¹²C target. **KEK** data 12**C** ${}^{12}C(K^{-},\pi^{+})$ Fitting to the QF spectrum from KEK 1000 3D orbits $\Sigma^- QF$ COUNTS [EXP.] ′×10⁻² 500 $^{12}_{\Lambda}\text{Be}$ $\frac{12}{\Sigma}$ Be Integrated \mathbf{p}_{Λ} production rate s_{Λ} $\sim 4 \times 10^{-6} / K^{-1}$ 0 -20 20 0 40 60 80 100 E_{Λ} (MeV)

DAPANE data: U.L. ~ $(2.0\pm0.4) \times 10^{-5} / K^{-1}$

M.Agnello, et al., PLB640(2006)145.

Production of neutron-rich Λ-hypernuclei with the DCX reaction

<u>S = -2 の原子核</u>

Studies of Ξ^{-} s.p. potentials

Hyperon s.p. potentials in finite nuclei

G-matrix+local density approximation

M. Kohno, Y. Fujiwara, PRC79(2009)054318.

fss2: SU₆ quark-model BB interaction by Kyoto-Niigata group

Ξ- spectrum in DCX (K-,K+) reactions at 1.8GeV/c

Spectroscopic study of Ξ -hypernucleus, ${}^{12}_{\Xi}$ Be via the ${}^{12}C(K-,K+)$ reaction

Cluser-Model Calculations for AA Hypernuclei with A=6-10

Coupled Channel Approach to Doubly Strange Hypernuclei

Ξ -AA spectrum in DCX (K⁻,K⁺) reactions at 1.8GeV/c

²⁶

<u>ハイペロン相互作用–中性子星の解明を目指して</u>

 $\square \Lambda N$ $U_0(\Lambda) \sim (-30)$ MeV, $U_{LS}(\Lambda) \sim 2$ MeV \rightarrow 精密測定 E13@J-PARC -38 MeV? ΣN $U_0(\Sigma) \sim 斥力的, U_{IS}(\Sigma)$? $\square \Lambda N - \Sigma N$ a few % mixing, $\Lambda NN3$ 体力 → 中性子過剰ハイパー核 E10@J-PARC ΞN $U_0(\Xi) \sim (-14) \cdot (-0) \text{ MeV } ? \rightarrow (K-,K+) 反応, \Xi-原子X線$ E03,05@J-PARC $\Lambda \Lambda - \Xi N - \Sigma \Sigma$ mixing prob. ?, H-particle ? E07@J-PARC $K^-N-\Lambda(1405)-π\Sigma$ U_0 (K⁻) ~ deep(-200 MeV) or shallow (-50 MeV) \rightarrow (K⁻,N)反応 E15,E23@J-PARC

<u>K^{bar}中間子原子核</u>

Theoretical prediction for deeply-bound antiKaonic nuclei

Theoretical predictions of deeply-bound K-pp

- ▶ すべての理論計算が準束縛状態の存在を示唆。幅は広い。
- ▶ B.E.とГの違いはK^{bar}N int.や3体系計算方法の違いによるもの?
- "πΣN decay" チャンネル効果が必要

³He(K⁻,n)K-pp spectrum at 1.0GeV/c (0deg)

E15@J-PARC A search for deeply-bound kaonic nuclear states by in-flight ${}^{3}\text{He}(K^{-},n)$ reaction

missing mass spectroscopy +invariant mass spectroscopy

J-PARC (Japan Proton Accelerator Research Complex)

Proposed experiments for SNP @J-PARC

- E03: Measurement of X rays from Ξ^- atom /K. Tanida (Kyoto)
- E05: Spectroscopic study of Ξ-hypernucleus, ¹²_ΞBe, via the ¹²C(K⁻,K⁺) reaction /T. Nagae (Kyoto) [Day 1]
- E07: Systematic study of double strangeness system with an emulsion-counter hybrid method/K. Imai (Kyoto), K. Nakazawa (Gifu), H. Tamura (Tohoku)

S = -1

S = -2

- E10: Production of neutron-rich Lambda-hypernuclei with the double charge exchange reaction /A. Sakaguchi (Osaka), T. Fukuda (Osaka E. -C.)
- E13: Gamma-ray spectroscopy of light hypernuclei/H. Tamura (Tohoku) [Day 1]
- E15: A search for deeply-bound kaonic nuclear states by in-flight ³He(K⁻,n) reaction/M. Iwasaki (RIKEN), T. Nagae (Kyoto) [Day 1]
- E17: Precision spectroscopy of kaonic ³He 3d→2p X-rays /R. S. Hayano (Tokyo), H. Outa (RIKEN) [Day 1]
- E18: Coincidence measurement of the weak decay of ¹²_AC and the three-body weak interaction process/H. C. Bhang (Seoul), H. Outa (RIKEN), H. Park (KRISS)
- E22: Exclusive study on the ΛN weak interaction in A=4 Λ-Hypernuclei/S. Ajimura (Osaka), A. Sakaguchi (Osaka)
- E23: Search for a nuclear Kbar bound state K⁻pp in the d(π^+ ,K⁺) reaction/T. Nagae (Kyoto)

Conclusion

Studies of the production and spectroscopy of strangeness nuclei are very interesting and exciting at J-PARC.

▶中性子星の構造・進化の解明を目指して→高密度QCD物質
>バリオン-バリオン間相互作用の理解、短距離斥力の起源
>ストレンジネスが拓く新しい状態の発見、"エキゾチック"な原子核

ハイペロン混合,荷電交換反応