J-PARCでチャームバリオンの物 理をやる価値

H. Noumi

A new research project in High-res., High-p Beam Line at J-PARC

- Proposed by RCNP, Osaka U. under the MOU on research cooperation between RCNP, IPNS/KEK, and the J-PARC Center
- Role of RCNP
 - Collect research ideas and collaborators
 - Introduce new methods/techniques
 - High-resolution, high-p Secondary Beam Line
 - Multi-particle Spectrometer
 - Conduct hadron physics with a leader ship of RCNP

High-p Line for 2^{ndary} Beam

- High-intensity secondary beam (unseparated) can be delivered.
 - 2 msr %, 1.0 x 10⁷ Hz @ 15GeV/c π
- High-resolution beam: $\Delta p/p^{0.1\%}$
 - Momentum dispersion and eliminate 2nd order aberrations

使う反応: Missing Mass分光法

"主たるモード"

実験のデザイン

測定できるもの、できそうなもの

- 励起エネルギーと幅(数MeV~100MeV程度まで)
 - 基底状態から高励起状態(~1GeV)まで一気に生成
 - 崩壊過程によらない観測
 - 量子数のコントロール
 - $p(\pi^{-},\overline{D}^{*-}) \Lambda_{c}^{+}, \Sigma_{c}^{+}, p(\pi^{+},\overline{D}^{*-}) \Sigma_{c}^{+}, n(\pi^{-},\overline{D}^{*-}) \Sigma_{c}^{0}$
 - $n(\pi^+, D^{*+})$ " $\overline{D}N$ "⁰, $(p(\pi^-, D^{*+})$ " $\overline{D}N$ "⁻, $p(\pi^+, D^{*+})$ " $\overline{D}N$ "⁺)
- 生成断面積
- 崩壊分岐比(部分幅):角分布の守備範囲による
 - 高励起状態からπ、K、Dを1(か2)吐いて幅の狭い低励起状態(Ac/ΣcとかΞcとかN)へ崩壊するもの

- スピン?

チャームバリオンから何がわかる?

SU_F(3) good Chiral Symmetry Strong coupling to HG boson Diquark? Molecular State?

SU_F(4) broken
 Heavy Quark Symmetry
 Weak coupling to HG boson
 Diquark
 Molecular state

ダイクォーク

- 何をみればよいのか?
- レベル構造? 特徴は? 何が証拠になる?
 模型計算: クォーク間力の根拠?
 - そもそもそれを知りたい?
 - LQCD計算: 励起状態は難しい(のか?)
 - QQbar間力⇔(よいとされる)ポテンシャル模型との比較可能
 - qq(Qq/QQ)間力はわかっていない?
 - ダイクォーク → カラー超伝導への道はつくのか?
 - (Linear) Regge Trajectory (slope)?
- 崩壊分岐比
 - Ac → πΣc / KΞc / Dp はYcの構造を反映するのか
 結合定数が重要? →LQCD

- ダイクォーク相関: Λ_c^{*}(5/2-), Σ_c^{*}(5/2-)
- ハドロンクラスター: "DN"分子状態
- カイラルパートナー、ほか、、、

} どのように現れるか?

Diquarks in LQCD

Lattice studies

Diquark correlation function

 $C(\mathbf{r}_{u},\mathbf{r}_{d};t) = \langle 0 | J_{\Gamma}(0,2t) \rho_{u}(\mathbf{r}_{u},t) \rho_{d}(\mathbf{r}_{d},t) J_{\Gamma}^{\dagger}(0,0) | 0 \rangle$ $\rho(\mathbf{r},t) = \overline{q}_f \gamma_0 q_f, \quad f = u, d$ $J_{\Gamma}(x) = \varepsilon^{abc} [\underline{u}_{a}^{T}(x)C\Gamma d_{b}(x) \pm d_{a}^{T}(x)C\Gamma u_{b}(x)] s_{c}(x)$ *ud*-diquark Static heavy quark cクォークは十分重くない? $\rho_u(\mathbf{r}_u,t)\rho_d(\mathbf{r}_d,t)$ t - 0t

Lattice計算の意味?

- 強いqq相関(カラー3^{bar})がみられる
 - 広がりは0.3fm? ハドロンのサイズと同等?
 - これはダイクォークといってよいのか。
 - ーだとすると"mass"は?
 - 距離の関数?

Covariant Oscillator Quark Model

S. Ishida et al, PTP91, 775(1994)

 $\Omega_{\rho} = 2(2m+M) \left(\frac{3K_3}{m}\right)^{1/2}$ Mesons: $M^2 = \Omega L + M_0^2$. Baryons: $M^2 = \Omega_{\rho} L_{\rho} + \Omega_{\lambda} L_{\lambda} + M_0^2$. $\Omega_{\lambda} = 2(2m+M) \left(\frac{K_3}{m} + \frac{2K_3}{M}\right)^{1/2}$ (a) (b) $\Lambda_{\rm C}$ $\Sigma_{\mathbf{C}}$ 9 0,=2.13 GeV² $\Omega_{\mu} = 2.13 \text{ GeV}^{4}$ $\Omega_{\lambda} = 1.50 \text{ GeV}^{8}$ Ω₂ = 1.50 GeV[®] 8 8 Mass²[GeV²] Kass²[GeV² 7 $\mathbf{7}$ አ.(2627) 6 $\Sigma_{c}(2455)^{4}$ 6 A_c(2884)^{*} 5 5 4 $\mathbf{3}$ $\mathbf{2}$ $\mathbf{3}$ -10 0 $\mathbf{2}$ L=N L=N

COQM

S. Ishida et al, PTP91, 775(1994)

5

保坂さんのスライドより

What to observe

Ratio: $[q\overline{q} + qqQ]/[Q\overline{q} + qqq]$

Belle

Qqbar+qqqとQqqの区別?

- サイズ
 - 電磁形状因子の直接測定は困難
 - E2電磁崩壊(部分)幅
 - UR Acビームによる電磁散乱?(思いつき)
 - ほかに方法はないのか?

やっぱり知りたいp(π-,D*-)の 生成断面積

$$\sigma(s) = C \int_{t_0}^{t_1} dt \left[\frac{1}{64\pi s (p_m^{cm})^2} g_1^2 g_2^2 |F(t)|^2 |s/s_0|^{2\alpha(t)} \right]$$

高エネルギー2体反応の描像 →quark planar diagram(下図) エネルギー依存性の傾向再現(左図)

A.B. Kaidalov, ZPC12, 63(1982)

c.f.

V.Yu Grishina et al., EPJA25, 141('05) A.I. Titov & Kampfer, PRC78, 025201('08) $g_1 : \pi DD^*$ $g_2 : DNY_c$

$$|F(t)|^2 = \exp(2R^2t),$$

 R^2 : slope parameter

 $\alpha(t)$: Regge Trajectory

 $s_0 = (m_M + m_B)^2$: scale parameter

p(π⁻,D^{*-})の生成断面積? 過去の実験: σ<270nb@13 GeV/c (PRL55, 154(1985))

σ(*π*-*p*->*K*Λ, *K*Σ)に対して10^{-4~-5}?

26

断面積からわかることは?

• 生成率の系統的比較

NDY_c、*ND*Y_c*結合定数:LQCD?
 → NDYc*結合定数 Yc*->DN
 - 形状因子(遷移)

pQCD計算との比較から何かわかる?
 – そもそも、、、

ちょっと発散気味ですが

結局ハドロンのクォーク構造からわかること

- QCDに対するインパクト?

- 閉じ込め力の起源に迫れる?

- ダイクォーク凝縮?