<u>vector meson の媒質中での崩壊</u> <u>の測定とその解釈</u>

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center) 研究会

研究会 原子核媒質中のハドロン研究=魅力と課題= @東海

- dilepton mass spectra in the world
- J-PARC E16

Mass and chiral symmetry in nuclear matter

- Origin of quark and hadron mass : spontaneous breaking of chiral symmetry
- In hot/dense matter, chiral symmetry is expected to be restored
 - hadron spectral (mass, width) modification is also expected

vacuum normal nuclear density [density]

- (歴史的に) QGP の証拠としてのカイラル対称性の回復による中間子質量の変化 が探索されてきた。
- 高温(重イオン衝突)および 原子核密度中(原子核標的実験)での 中間子の質量スペクトルの変化は存在した。
 - 形に medium size 依存性(pp,pA,AA, velocity)がある。
- 変化の原因は?: 解釈の哲学
 - hadronic な計算だけでも変形する。
 - "dropping VS broadening ... chiral symmetry VS hadronic ?"
 - 単純化しすぎ。
 - QCD からの予測と hadronic な予測は本来矛盾してはいけない
 - QCDの low energy における数少ない予測の検証の機会
- 解釈の方法論
 - 中間子も媒質も "動いて" いる: 系の時間空間発展、FSI、質量変化の運動量依存
 - 少ない統計、dataset では何をやっても合ってしまう:結論の有意性
 - ρ - ω interference, etc.

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

Summary

- 次の一手
 - 実験 (@J-PARC)
 - 質量変化の系統的(物質サイズ·運動量)測定: E16 30 GeV p+A
 - 中間子束縛核 (E26, E29) からの中間子崩壊 ~2GeV/c π + A, pbar+A
 - 中間子も系もきれい 崩壊点の密度もわかる
 - ee channel をみるには数が足りなそう
 - bound してなくても 遅い中間子がたくさんいるのでは。
 - 密度依存性:高密度@重イオン衝突? A+A?
 - 理論: 質量分布の実験データと QCD の予言を結ぶには?
 - 現象論 : 解析上の"バックグラウンド"
 - 系の時間空間発展、原子核サイズ効果, FSI :
 - BUU? 'dropping' を手でいれていいのか?
 - in-medium mixing などの 不変質量分布への影響
 - QCD: "無限核物質中に静止した中間子"ではないので。
 - 運動量依存性
 - 有限サイズ物質で結論はかわらないのか。

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

Vector meson measurements in the world

- HELIOS/3 (ee, μμ) 450GeV p+Be / 200GeV A+A
- DLS (ee) 1 GeV A+A
- CERES (ee) 450GeV p+Be/Au / 40-200GeV A+A
- <u>E325</u> (ee,KK) 12GeV p+C/Cu
- NA60 (μμ) 400GeV p+A/158GeV In+In
- PHENIX (ee,KK) p+p/Au+Au
- **STAR** ($\pi\pi$, KK, ee) p+p/Au+Au
- HADES (*) (ee) 1-4 GeV p+A/ 1-2GeV A+A
- CLAS-g7 (*) (ee) 1~2 GeV γ+A
- <u>J-PARC E16 (ee)</u> 30/50GeV p+A
- HADES/FAIR (ee) 2~8GeV A+A
- *CBM/FAIR* (ee) 20~30GeV A+A
- **TAGX** (ππ) ~1 GeV γ+A
- LEPS (KK) 1.5~2.4 GeV γ+A
- **CBELSA/TAPS(*)** $(\pi^{0}\gamma)$ 0.64-2.53 GeV γ + p/Nb
- ANKE (KK) 2.83 GeV p+A

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

published/ 'modified' published/ 'unmodified' running/in analysis future plan as of 2012/Sep

nedium-WS@Tokai 2013Aug06 S.Yokkaichi

NA60: ρ width broadening PHENIX: enhancement (cannot be explained yet) *Chiral restoration at High-T is not confirmed yet*

nedium-WS@Tokai 2013Aug06 S.Yokkaichi

1/

- 12GeV p+A (C/Cu) $\rightarrow \rho, \omega, \phi$ in the e⁺e⁻ channel
- below the ω and φ peaks, statistically significant excesses over the known hadronic sources including experimental effects
- interpreted : mass dropping 9.2%(ρ , ω) , 3.4% (ϕ)

Open question: **Observed hadron** modifications are signature of the chiral restoration / evidence of the QCD mass

generation?

nedium-WS@Tokai 2013Aug06 S.Yokkaichi

Mosel, Leupold, Metag (arXiv:1006.5822)

experiment	momentum	ρ	ω	ϕ
	acceptance			
KEK-E325				
pA	p > 0.6 GeV/c	$\frac{\Delta m}{m} = -9\%$	$\frac{\Delta m}{m} = -9\%$	$\frac{\Delta m}{m} = -3.4\%$
$12 \mathrm{GeV}$		$\Delta\Gamma \approx 0$	$\Delta\Gamma \approx 0$	$\frac{\Gamma_{\phi}(\rho_0)}{\Gamma_{\phi}} = 3.6$
CLAS		$\Delta m \approx 0$		
γA	p > 0.8 GeV/c	$\Delta \Gamma \approx 70 \text{ MeV}$		
0.6-3.8 GeV		$(\rho \approx \rho_0/2)$		
CBELSA			$\Delta m \approx 0$	
/TAPS			$p_{\omega} < 0.5 \ { m GeV/c}$	
γA	p > 0 MeV/c		$\Delta\Gamma(\rho_0) \approx 130 \text{ MeV}$	1
0.9-2.2 GeV			$\langle p_{\omega} \rangle = 1.1 \text{ GeV/c}$	
SPring8				
γA	p > 1.0 GeV/c			$\Delta\Gamma(\rho_0) \approx 70 \text{ MeV}$
1.5-2.4 GeV				$\langle p_{\phi} \rangle = 1.8 \text{ GeV/c}$
CERES		broadening		
Pb+Au	$p_t > 0 \text{ GeV/c}$	favored over		
158 AGeV		mass shift		
NA60		$\Delta m \approx 0$		
In+In	$p_t > 0 \text{ GeV/c}$	strong		
158 AGeV		broadening		

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

Mosel, Leupold, Metag (arXiv:1006.5822)

experiment	momentum	ρ	ω	ϕ	
	acceptance				
KEK-E325					
pA	$p > 0.6 \ {\rm GeV/c}$	$\frac{\Delta m}{m} = -9\%$	$\frac{\Delta m}{m} = -9\%$	$\frac{\Delta m}{m} = -3.4\%$	
12 GeV		$\Delta\Gamma \approx 0$	$\Delta\Gamma \approx 0$	$\frac{\Gamma_{\phi}(\rho_0)}{\Gamma_{\phi}} = 3.6$	
CLAS		$\Delta m \approx 0$			
γA	p > 0.8 GeV/c	$\Delta \Gamma \approx 70 \text{ MeV}$			
$0.6-3.8~{ m GeV}$		$(\rho \approx \rho_0/2)$			
CBELSA			$\Delta m \approx 0$		
/TAPS			$p_{\omega} < 0.5 \text{ GeV/c}$	not from the sp	ectra
γA	p > 0 MeV/c		$\Delta\Gamma(\rho_0) \approx 130 \text{ MeV}$	but CS from the	e A-dep.
0.9-2.2 GeV			$\langle p_{\omega} \rangle = 1.1 \text{ GeV/c}$		
SPring8					
γA	p > 1.0 GeV/c			$\Delta\Gamma(\rho_0) \approx 70 \text{ MeV}$	
$1.5-2.4 {\rm GeV}$				$\langle p_{\phi} \rangle = 1.8 \text{ GeV/c}$	
CERES		broadening			
Pb+Au	$p_t > 0 \text{ GeV/c}$	favored over			
158 AGeV		mass shift			
NA60		$\Delta m \approx 0$			
In+In	$p_t > 0 \text{ GeV/c}$	strong			
158 AGeV		broadening			

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

Experimental methods:pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the ϕ modification?
 - proton induced : better S/N than the HI collisions
 - large stat. using a high intensity beam : cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate

J-PARC E16 experiment

Systematic study of the modification of vector meson spectra in nuclei to approach the chiral symmetry restoration

	Oplichenstien
J-PARC E16	Collaboration
RIKEN	S.Yokkaichi, K. Aoki, Y. Aramaki, H. En'yo
	J. Kanaya, D. Kawama, Y.Morino,
	F. Sakuma, T.N. Takahashi
KEK	K.Ozawa, M. Naruki, R. Muto,
	S. Sawada, M. Sekimoto
U-Tokyo	Y.S. Watanabe, Y.Komatsu, S.Masumoto,
·	K.Kanno, H.Murakami,
	W.Nakai, Y. Obara, T.Shibukawa
CNS, U-Tokyo	H. Hamagaki
Hiroshima-U	K. Shigaki
JASRI	A. Kiyomichi
	-

Hadron-in-medium-WS@Iokai 2013Aug06 S.Yokkaichi

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10^{10} /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

charmonium yield @E16 (30 GeV)

- charmonium mass is governed by gluon condensate
 - small modification is expected for \mbox{J}/ψ
 - even narrow width (no in-medium decays)
 - width broadening (~10MeV) and mass dropping (~10-100MeV) for χ_c , $\psi(2s)$
- very rough estimation w/ the production CS ratio

Expected Invariant mass spectra in e[±]e[±]

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure : •
 - second peak is made by inside-nucleus decay (modified meson) : amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

Discussion : modification parameters

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

 $\frac{k_{1}}{k_{2}^{\text{tot}}} = 0.034_{-0.007}^{+0.006}$ For ϕ , 3.4% mass reduction (35MeV) 3.6 times width broadening(15MeV)⁰ at ρ_{0}

E16 : mass resolution requirement

- mass resolution should be kept less than ~10MeV
- Very ideal case : very slow mesons w/ best mass resolution:

ϕ -mass modification at ρ_0

- (vacuum value : m(0)=1019.456MeV, Γ(0)=4.26MeV)
 - $m(\rho)/m(0) = 1 k_1(\rho/\rho_0)$, $\Gamma(\rho)/\Gamma(0) = 1 + k_2(\rho/\rho_0)$
- determined by E325 (PRL98(2007)042581)
 - Δm : -35 (28~41) MeV, Γ : 15 (10~23) MeV
- Hatsuda, Lee [PRC46(1992)34)] QCD sum rule
 - Δm : -12~44 MeV (k=(0.15±0.05)y, y=0.12~0.22),
 - Γ : not estimated
- Klingl, Waas, Weise [PLB431(1998)254] hadronic
 - taking account of K-mass modification
 - Δm : < -10 MeV, Γ : ~45 MeV
- Oset , Ramos [NPA 679 (2001) 616] hadronic
 - different approach for K-mass
 - Δm : < -10 MeV, Γ : ~22 MeV for m=1020MeV, ~16MeV for m=985 MeV-
- Cabrera and Vacas [PRC 67(2003)045203] OR01+ hadronic
 - Δm : 8 MeV, Γ : ~30 MeV for m=1020MeV

expected shape w/ various parameters

expected shape w/ various parameters

- prediction for φ by S.H.Lee(p<1GeV/c)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter k₁(p), to all nuclear targets in each momentum bin 2^{0.3}

0.2

Nexcession 0.1

0

-0.1

1

1.5

2

2.5

momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest (p=0)
 - extrapolation to p=0 if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

dispersion of quasi particle in condensed matter

- ARPES (angle-resolved photoemission spectroscopy) measurements
 - Mass acquisition of Dirac electron in the topological insulator
 - heavy electron w/ Kondo-effect in CeCoGe_{1.2}Si_{0.8}

Impact of E16

- hadron modification are observed in several experiments but interpretation is not converged : "mass dropping or broadening?"
 - theoretically the question is oversimplified : T- dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
- pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0$, T=0) using ϕ meson
 - confirm the E325 observation with improved resolution(x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 - first measurement of the dispersion relation of hadrons in nuclear matter
- establish a low energy phenomenon which can be predicted by means of QCD
 - mass generation due to the chiral symmetry breaking
- Further Step (future experiment)
 - slow ϕ at HIHR beam line with $10^9 \pi$ beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 - chiral phase transition in the high-density region

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for φ (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model

- current E325 analysis neglects the dispersion (limited by the statistics)

^γ.dron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

1.5

- current E325 analysis neglects the dispersion (limited by the statistics)

- prediction for φ by S.H.Lee(p<1GeV/c)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter k₁(p), to all nuclear targets in each momentum bin 0.3
 1

ss excess 0.2

0.1 N

0

-0.1

1

1.5

2

2.5

- <\overline{s}\$
 (\overline{s}\$s condensate in medium whose density is ρ) is relevant the φ mass in nuclear matter under the QCD sum rule analysis by Hatsuda & Lee (PRC46(92)R34 : HL92)
 - linear approx. : $\langle \overline{s}s \rangle(\rho) = \langle \overline{s}s \rangle$ (vacuum) + $\langle N | \overline{s}s | N \rangle \propto \rho$
- $<N|\overline{s}s|N>$ should be determined by experimental data
- Recently <N|ss|N> (so called "strangeness content in nucleon") is calculated with Lattice QCD
 - found to be smaller than the assumed value in HL92, however, agree within the error : predicted value '2-4%' is not so affected

hi

To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance : x~ 5
 - : $x \sim 2$ of production Higher energy beam (12 \rightarrow 30/50 GeV)
 - Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)
- **Proposed Spectrometer** Plan View Prototype Module nuclear targets 5m beam LeadGlass alorimeter EM calorimeter return 30/50 GeV proton beam **GEM** Tracker herenkoy adiator Hadron blind electron identifier magnet pole piece GEM tracke Pad chamber 26 detector modu Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi
- to cope with the high rate, new detectors (GEM Tracker & HBD) are required.

<u>High-p line in the Hadron hall</u>

• 3 years plan of the construction : budget requested by KEK to MEXT

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

<u>High-p line in the Hadron hall</u>

• 3 years plan of the construction : budget requested by KEK to MEXT

E16 Schedule

- •2007: stage1 approval
- •2008-2010 : development of prototype detectors w/ Grantin-Aid(2007-8, 2009-13)
- •JFY 2011-12 : additional parts of the spectrometer magnet , R/O circuit development
 - 1st module of production type (GT and HBD)
 - 1st test type preamp for GT
 - tests @ J-PARC K1.1BR
- JFY 2013 : start the production of the detectors/circuits
- JFY 2014/4Q : magnet reconstruction
 - start the detector install
- •JFY 2015/4Q : ready for the first beam
 - staged goal of the spectrometer construction (w/ 8 detector modules)

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10^{10} /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

HADES

- lower energy HI collisions : $A+A \rightarrow e^+e^-$
- DLS data is confirmed, and the puzzle in C+C is resolved by (pp+np)[PLB690(10)118]
- However, Ar+KCI have enhancement over the (pp+np) estimation [PRC84(11)014902]

HADES 3.5GeV/c pp and pNb

combinatorial background

raw data

• CERES : (PLB666(2008)425)

"broadening by hadronic effect " is favored

Vector meson measurements in HIC

 $\sigma_{trie}/\sigma_{tot} \sim 35 \%$

p_>200 MeV/c

Θ., > 35 mrad

2.1 < n < 2.65

1.8

 $m_{ee} (GeV/c^2)$

1.2 1.4 1.6

 $\langle N_{ab} \rangle = 220$

- CERES : e⁺e⁻ (EPJC 41('05)475)
 - anomaly at lower region of ρ/ω
 - in A+A, not in p+A
 - relative abundance is determined by their statistical model

 $(d^2 N_{cc}/d\eta dm_{cc}) / (dN_{ch}/d\eta) (100 MeV/c^2)$

10

10

10

0 0.2 0.4

Pb-Au 158 A GeV

0.6 0.8

bkg subtracted

 $2.1 < \eta < 2.65$

p_> 50 MeV/c

 $\langle dN_{eb}/d\eta \rangle = 7.0$

m_∞ (GeV/c²)

10

10

p-Au 450 GeV

0.5

- NA60 : (PRL96(06)162302)
 - $\rho \rightarrow \mu^+ \mu^-$:
 - width broadening
 - 'BR scaling is ruled out'

- **PHENIX** : [arXiv:0706.3034v1,PRC81(2010) 034911]
 - 200GeV /u Au+Au $\rightarrow e^+e^-$
 - enhancement below ω
 - cannot reproduced by any model at low pT
 - at high pT, thermal photons reproduce

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

- PHENIX : [arXiv:0706.3034v1,PRC81(2010) 034911]
 - 200GeV /u Au+Au $\rightarrow e^+e^-$
 - enhancement below ω
 - cannot reproduced by any model at low pT(<1GeV/c)
 - at high pT, thermal photons reproduce

- STAR (preliminary): [arXiv:1305.5447v1,1208.3437,etc]
 - 200GeV /u (& 62.4, 39.0,19.6 GeV/u) Au+Au $\rightarrow e^+e^-$
 - enhancement below $\boldsymbol{\omega}$
 - "discrepancy between the PHENIX data" ...acceptance?
 - some models (like for NA60) reproduce the data

CLAS-G7(PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+ e^-$
- no anomaly for p >0.8GeV/c

300

200

 ^{2}H

(a)

CLAS-G7(PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+ e^-$
- no anomaly for $p > 0.8 GeV/c : \rho$ mass dropping <4% in 95%C.L.
 - ρ width broadening (up to ~45%) is consistent with the collisional broadening
 - ω modification is not included in the analysis

CBELSA/TAPS (PRL94(05)192303)

- $\omega \rightarrow \pi^0 \gamma (\rightarrow \gamma \gamma \gamma)$
- anomaly in γ +Nb, not in γ +p
 - shift param. k~0.14

CBELSA/TAPS

- $\gamma + A \rightarrow \omega \rightarrow \pi^0 \gamma (\rightarrow \gamma \gamma \gamma)$
- excess in γ +Nb, not in γ +p
 [PRL94(05)192303]

 excess is not reproduced significantly by the following experiment [EPJA47(11)16]

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi

mass resolution requirement

mass resolution should be kept less than ~10MeV

target thickness optimization

- γ -conversion in the target materials : trigger background
 - when 100 of π^0 are produced,
 - 1.2 ee pair from the Dalitz decay
 - [200 x target-X_0] ee pair from the $\,\pi^{\scriptscriptstyle 0} \to 2\gamma\, decay$
 - Thus, comparable point is target- $X_0 = 0.5\%$
- radiative tail (bremsstrahlung) for the electron tracks
 - Material budget is ~1% in the tracking detectors except the target.
- - thin target is compensated using the higher intensity beam
 - interaction rate at the target can be conserved
 - beam halo is scaled to the intensity
 - halo rate is assumed as same as E325 : KEK-PS EP1B beamline
 - ~1-3k /mm² at 10cm from the beam axis for 1.6 $\times 10^{10}$ protons

Note: shape and its nuclear matter size / momentum dependence

- size of "mass shift" or "mass dropping" (∆m)
 - proportional to the density : physics
 - could be dependent on the momentum : physics
- number of "shifted" meson
 - proportional to the matter size
 - depend on the meson life
 - $\beta\gamma$ of mesons
 - decay width change
- observed shape
 - depend on the "shift", width, and density distribution of the nuclei

- : experimental viewpoint : use larger nuclei
- : experimental viewpoint: select slower
 - : physics

width broadening by absorption

- Attenuation measurements:
 - absorption in nuclei evaluated from the A-dependence of production CS using theoretical models (Glauber, Valencia, Giessen...)
 - additional width: $\Gamma_{abs} = \hbar \rho \beta c \sigma_{abs}$
- LEPS : ϕ : σ_{abs} = 35mb, p=1.8 GeV/c [PLB608(05)215] (\rightarrow Γ = ~100 MeV)
- TAPS : ω : σ_{abs} = 70mb, p=1.1GeV/c , Γ =~150 MeV [PRL100(08)192302]
- CLAS : φ : 16-70mb, 2 GeV/c , Γ=23-100MeV [PRL105(10)112301]
 - A-dependence of ω (p=1.7GeV/c) is not reproduced by any model
- ANKE : φ : 14-21mb, 0.6-1.6GeV/c, 50-70MeV [arXiv:1201.3517v1]
 - 2.83 GeV p+A
- Note:
 - different from the old higher-energy photo-production data
 - No one measured the width directly through the mass shape

E325 A-dependence of the meson production

cross sections

- values for the CM backward
- consistent w/ the former measurement for ρ meson by Blobel (PLB48(1974)73)
- Nuclear dependence $\alpha_{\phi} = 0.937$ corresponds to about $\sigma_{\phi N} = 3.7 \text{mb}$ (cf. Sibirtsev et.al. EPJA 37(2008)287)

additional Γ =12 MeV for 2 GeV/c ϕ (β =0.9) : consistent with Γ =15 MeV (i.e. k₂=2.6)

• Remark:

 Γ_{ϕ} =15 MeV at m_{\phi}=985MeV is consistent with Oset & Ramos et.al (NPA679(2001)616)

width broadening

- width broadening due to the nuclear interaction
 - absorption by nucleon : ϕ + N \rightarrow X+Y
 - Γ_{ϕ} (= Γ_{abs} (only in medium) + $\Gamma_{\phi \to KK} + \Gamma_{\phi \to ee} + ...$) changes
 - additional 24MeV in near QGP (Smith and Haglin, PRC57(2001)1449)
 - Kaon mass modification : phase space changes
 - $\phi \to KK$ probability ($\Gamma_{\phi \to KK}$) changes
 - $\phi \rightarrow ee$ probability ($\Gamma_{\phi \rightarrow ee}$) could be modified through the wave function change
 - van Royen-Weisskopf formula $\Gamma_{V \rightarrow e^+e^-} = rac{16\pi^2 \alpha^2}{M^2} |\psi(x=0)|^2$
- fake width broadening in mass spectra
 - momentum dependence of mass : projection to invariant mass spectrum

density & chiral condensate in HIC

Which is suitable (interesting) energy for the search of anomaly,

Hadron-in-medium-WS@Tokai 2013Aug06 S.Yokkaichi