Nuclear effects in the extraction of oscillation parameters

Olga Lalakulich, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik

Motivation and Contents

Neutrino energy and Q² needed for

- Hadron physics, electroweak couplings to nucleons and resonances
- Neutrino oscillations
- Neutrino beams are broad in energy
- Modern experiments use nuclear targets

 Nuclear effects affect cross section measurements, neutrino energy and Q² reconstruction and, consequently, oscillation parameters

Neutrino Oscillations

JPARC 02/2014

$$\begin{aligned} P(\nu_{\mu} \to \nu_{e}) &\simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}} \\ &- \left(\alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \right) \\ &+ \left(\alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \right) \\ &+ \left(\alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}^{2}} \right) \\ &\equiv O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} \end{aligned}$$

appearance probability

Vacuum oscillation

 $\Delta m_{21}^2 L$

 $\Lambda =$

mass hierarchy

 $2\sqrt{2}G_F n_e E$

 $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$

Matter effects, n_e = electron density depends on sign of Δ_{31}

 $(\delta) = CP$ violating phase

 $\xi = \cos \theta_{13} \, \sin(2\theta_{12}) \, \sin(2\theta_{23})$

LBNE, δ_{CP} Sensitivity

Need to know neutrino energy to better than about 100 MeV

Need energy to distinguish between different δ_{CP}

JPARC 02/2014

Theoretische Physik

Oscillation Signal Dependence on Hierarchy and Mixing Angle

Fig. 2. $P_{\mu\epsilon}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict positive θ_{13} , solid curves depict positive θ_{13} .

Shape sensitive to hierarchy and sign of mixing angle Energy resolution of about 50 MeV is needed

Energy Reconstruction by QE

In QE scattering on nucleon at rest, only *l* +*p*, *no* π, is outgoing. lepton determines neutrino energy:

$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Trouble: all presently running exps use nuclear targets
 Nucleons are Fermi-moving
 Final state interactions may hinder correct event identification

JPARC 02/2014

itut für oretische Physik

Final State Interactions in Nuclear Targets

Complication to identify QE, entangled with π production Both must be treated at the same time! Nuclear Targets (K2K, MiniBooNE, T2K, MINOS, Minerva,)

- UNIVERSI

Need for a Neutrino Generator

Need final state for event reconstruction Inclusive cross sections are not enough, need semi-inclusive for event identification • Must describe complete final state of $(vA \rightarrow lX)$ for 0 pion condition (incl. ,stuck pions') Only practical theory: MC or transport code

- GiBUU : Theory and Event Generator
 based on a BM solution of Kadanoff-Baym equations
- Physics content and details of num. implementation: Buss et al, Phys. Rept. 512 (2012) 1- 124
 Code available from gibuu.hepforge.org

Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator JPARC 02/2014

Transport Equation

Collision term

$$\mathcal{D}F(x,p) + \operatorname{tr}\left\{\operatorname{Re}\tilde{S}^{\operatorname{ret}}(x,p), -\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{\operatorname{pb}} = C(x,p).$$
Drift term
$$\left[\left(1 - \frac{\partial H}{\partial p_{0}}\right)\frac{\partial}{\partial t} + \frac{\partial H}{\partial \mathbf{p}}\frac{\partial}{\partial \mathbf{x}} - \frac{\partial H}{\partial \mathbf{x}}\frac{\partial}{\partial \mathbf{p}} + \frac{\partial H}{\partial t}\frac{\partial}{\partial p^{0}} + \operatorname{KB}\operatorname{term}\right]F(x,p)$$

$$= -\operatorname{loss}\operatorname{term} + \operatorname{gain}\operatorname{term}$$
F: 8d-Spectra

Kadanoff-Baym equation

- LHS: drift term + backflow (KB) terms
- RHS: collision term = loss + gain terms (detailed balance)

JPARC 02/2014

Institut für Theoretische Physik

phase space

density

Collision term

$$C^{(2)}(x,p_{1}) = C^{(2)}_{\text{gain}}(x,p_{1}) - C^{(2)}_{\text{loss}}(x,p_{1}) = \frac{S_{1'2'}}{2p_{1}^{0}g_{1'}g_{2'}} \int \frac{\mathrm{d}^{4}p_{2}}{(2\pi)^{4}2p_{2}^{0}} \int \frac{\mathrm{d}^{4}p_{1'}}{(2\pi)^{4}2p_{1'}^{0}} \int \frac{\mathrm{d}^{4}p_{2'}}{(2\pi)^{4}2p_{2'}^{0}} \\ \times (2\pi)^{4}\delta^{(4)} \left(p_{1} + p_{2} - p_{1'} - p_{2'}\right) \overline{|\mathcal{M}_{12 \to 1'2'}|^{2}} [F_{1'}(x,p_{1'})F_{2'}(x,p_{2'})\overline{F}_{1}(x,p_{1}) \\ \times \overline{F}_{2}(x,p_{2}) - F_{1}(x,p_{1})F_{2}(x,p_{2})\overline{F}_{1'}(x,p_{1'})\overline{F}_{2'}(x,p_{2'})]$$

For two-body collisions

with

$$F(x,p) = 2\pi g A(x,p) f(x,p)$$

$$\bar{F}(x,p) = 2\pi g A(x,p) \left[1 - f(x,p)\right]$$

- GiBUU describes (within the same unified theory and code)
 - heavy ion reactions, particle production and flow
 - pion and proton induced reactions
 - low and high energy photon and electron induced reactions
 - neutrino induced reactions

using the **same physics input**! And the same **code**! NO TUNING!

GiBUU Ingredients

- In-medium corrected primary interaction cross sections, nucleons bound and moving in local Fermigas
- Includes spectral functions for baryons and mesons (binding + collision broadening)
- Vector couplings taken from electro-production (MAID)
- Axial couplings modeled with PCAC
- Hadronic couplings for FSI taken from PDG
- Events for W > 2 GeV (DIS) from PYTHIA

Check: pions, protons

SIS - DIS

Shallow Inelastic Scattering, interplay of different reaction mechanisms

Curves: GiBUU

Reaction Types

- 3 major reaction types relevant:
- 1. QE scattering
 - true QE (single particle interaction)
 - many-particle interactions (RPA + 2p2h + spectral functions)
- 2. Pion production
- 3. SIS and DIS (less important at T2K and MiniBooNE)
- All reaction types are entangled: final states may look the same

T2K vs MB Flux

Neutrino-nucleon cross section

Quasielastic scattering

$$egin{aligned} J_{QE}^{\mu} &= \left(\gamma^{\mu} - rac{\not q \, q^{\mu}}{q^2}
ight)F_1^V + rac{i}{2M_N}\sigma^{\mulpha}q_lpha F_2^V \ &+ \gamma^{\mu}\gamma_5 F_A + rac{q^{\mu}\gamma_5}{M_N}F_P \end{aligned}$$

Vector form factors from *e*-scattering

 g_A

- axial form factors
 - $F_A \Leftrightarrow F_P$ and $F_A(0)$ via **PCAC** dipole ansatz for F_A with

$$A_{A} = 1 \text{ GeV:} \quad F_{A}(Q^{2}) = \frac{1}{(1 - 1)^{2}}$$

2p-2h Processes

Model for $v + p_1 + p_2 \rightarrow p_3 + p_4 + I$ (no recoil)

$$\frac{d^2\sigma}{dE'_l d(\cos\theta')} \propto \frac{k'}{k} \int_{NV} d^3r \int \prod_{j=1}^4 \frac{d^3p_j}{(2\pi)^3 2E_j} f_1 f_2 \overline{|M|^2} (1-f_3)(1-f_4)\delta^4(p)$$

with flux averaged matrixelement

$$\overline{|M|^2} = \int \Phi(E_{\nu}) L_{\mu\nu} W^{\mu\nu} \,\mathrm{d}E_{\nu}$$

Flux smears out details in hadron tensor W W contains 2p-2h and poss. RPA effects Ansatz for W: $W_{uv} = g_{uv} F(Q^2)$

The MiniBooNE QE Puzzle

M = const

 $\overline{M} = M(E,q), W^{\mu\nu} \sim P_T^{\mu\nu}(q)$

Phase-space model for 2p-2h Absolute value fitted to data.

JPARC 02/2014

Institut für **Theoretische Physik** USTUS JIERIO

UNIVERSITA

GIESSEI

Pion Production

Pion production dominated by P₃₃(1232) resonance (not just a heavier nucleon)

$$\begin{split} J^{\alpha\mu}_{\Delta} &= \quad \left[\frac{C_3^V}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C_4^V}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C_5^V}{M_N^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_5 \\ &+ \frac{C_3^A}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C_4^A}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C_5^A g^{\alpha\mu} + \frac{C_6^A}{M_N^2} q^{\alpha} q^{\mu} \end{split}$$

C^V(Q²) from electron data (MAID analysis with CVC)

 C^A(Q²) from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A₅ determined, for other axial FFs only educated guesses

Pion Production

discrepancy between elementary data sets \rightarrow impossible to determine 3 axial formfactors New pion data on elementary target desparately needed! Institut für

JPARC 02/2014

Theoretische Physik

USTUS J IEBIG

UNIVERSITÄ

Electrons as Benchmark for GiBUU

Trouble for neutrinos: ω must be reconstructed

35 full in-med. SF $d\sigma/d(\Omega_{k} d|k|^{\circ}) [nb/(sr MeV)]$ 30 12C 25 0.737 GeV, 37.1° 20 Q²_{QE-peak}=0.190 GeV² 15 10 5 0 0.2 0.4 0.5 0.6 0.7 0 0.1 0.3 ω [GeV]

No free parameters! no 2p-2h, contributes in dip region and under Δ 25(e,e') Carbon target $E_e = 730 \text{ MeV}, \theta = 37^{\circ}$ (i) Carbon target $E_e = 730 \text{ MeV}, \theta = 37^{\circ}$

O. Benhar, spectral fctn

Institut für Theoretische Physik

UNIVERSIT

Pion Spectra in MB

Strong fsi effect (π + N \rightarrow Δ , Δ + N \rightarrow NN) not seen in data

Institut für Theoretische Physik

Pion Production in T2K

Δ dominant only up to 0.8 GeV

Measurement of π^+ production between about 0.5 and 0.8 GeV would be clean probe of Δ dynamics.

Pion Production in T2K

Upper curve: BNL input, lower curve: ANL input

T2K pion data may help to distinguish between ANL and BNL input

Oscillation and Energy Reconstruction

- For nuclear targets QE reaction must be identified to use the reconstruction formula for E_v exp: 1 lepton, no pion, any number of other hadrons
- But: exp. definition of QE cannot distinguish between true QE (1p-1h), N* and 2p-2h interactions
- Many different reaction mechanisms, besides true QE, can contribute to the same outgoing lepton kinematics

Energy Reconstruction by QE

CCQE scattering on neutron at rest

Energy

$$E_{\nu}^{\text{rec}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_nE_B + m_{\mu}^2 + \Delta M^2)}{2\left[M_n - E_B - E_{\mu} + |\vec{k}_{\mu}|\cos\theta_{\mu}\right]}$$

$$Q^2$$

$$Q_{\rm rec}^2 = -m_{\mu}^2 + 2E_{\nu}^{\rm rec}(E_{\mu} - |\vec{k}_{\mu}|\cos\theta_{\mu})$$

Energy reconstruction tilts spectrum, affects Q² distribution at small Q²

0 Pion Events from GiBUU

From Coloma & Huber: arXiv:1307.1243v1

Energy reconstruction in MB

Reconstructed energy shifted to lower energies for all processes beyond QE Reconstruction must be done for 0 pion events Not only 2p-2h important

NOT contained in Nieves model

MiniBooNE flux

= flux x crosssection

Event rates

JPARC 02/2014

Physik

Energy-Reconstruction

Reconstr. energy contains a superposition of many true energies:

- 1. broadening due to Fermi motion
- 2. High energy tails due to reaction mechanisms other than QE

T2K migration matrix

T2K Flux Target: ¹⁶O

Oscillation signal in T2K v_{μ} disappearance

Martini

Institut für Theoretische Physik

GiBUU

Sensitivity of oscillation parameters to nuclear model

reconstructed from naive QE dynamics

P. Coloma, P. Huber, arXiv:1307.1243, July 2013 Analysis based on GiBUU

T2K

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence

JPARC 02/2014

Institut für Theoretische Physik

Sensitivity of T2K to Energy Reconstruction

Fig. 2. $\mathcal{P}_{\mu e}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

Summary

- Energy and Q² reconstruction essential for precision determination of neutrino oscillation parameters (and neutrino-hadron cross sections)
- Energy and Q² reconstruction requires reliable event generators, of same quality as experimental equipment
- Precision era of neutrino physics requires much more sophisticated generators and a dedicated effort in theory

Generators

- Generator is an important part of any experiment: Need generator for transformation reconstructed energy → true energy
- at the end of a very sophisticated experiment you do not want to have someone with a ,crummy' code to mess up your data!
- Generator-Development must be integral part of any experiment (and its funding)!

Precision era requires better generators

Present generators have evolved into a patchwork of theories, recipes and fit parameters without any theoretical justification and loose predictive power

It is thus time to critically scrutinize existing generators, take the best parts from any of them, supplement them with consistent theory and build a

v-GENIE (or NEUT)

Precision era requires better generators What needs to be done? Theory

- 1. Develop consistent framework for many-body effects: spectral functions + couplings, consistent groundstates
- Theory must comprise besides QE also pion and DIS region because all are entangled
- Parametrize hadron tensors as function of relevant kinematical variables for use in generators
- 4. Consistency of inclusive and exclusive X-sections
- 5. Improve all important final state interactions

Guiding Principles for a new Generator

Consistency:

e.g., same ground state for all subprocesses (negative example: combine free uniform Fermi gas with bound state local gas)

Detailed balance:

e.g.: $\Delta + N \rightarrow NN$ (pionless Delta decay) must be related to $N + N \rightarrow \Delta + N$ (negative example: just take out 20% Δs)

Relativity:

e.g., generator collision criterion $\sigma = \pi d^2$ is incorrect

Correct: in nuclear structure and reaction theory

