Heavy quarkonium potential from lattice QCD

Shoichi Sasaki (Tohoku Univ.)

T. Kawanai, SS, PRL 107 (2011) 091601
T. Kawanai, SS, PRD85 (2012) 091503(R)
Why back to quark potential models?

Why back to quark potential models?

Charmonium-like XYZ mesons are discovered

“Exotic” = “Non-standard”?

XYZ mesons could not be simply explained by a constituent quark description as quark and antiquark bound states

“Standard” states can be defined in potential models

→ Does it sound reliable?

Meson *local* operator

\[\bar{q}(x) \Gamma q(x) \]

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>(^{2S+1}L_J)</th>
<th>(J^{PC})</th>
<th>Meson</th>
<th>Charmonium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_5)</td>
<td>(^1S_0)</td>
<td>0−+</td>
<td>(\pi)</td>
<td>(\eta_c)</td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>(^3S_1)</td>
<td>1−−</td>
<td>(\rho, \omega)</td>
<td>(J/\psi)</td>
</tr>
<tr>
<td>(1)</td>
<td>(^3P_0)</td>
<td>0++</td>
<td>(\sigma, a_0, f_0)</td>
<td>(\chi_0(1P))</td>
</tr>
<tr>
<td>(\gamma_5 \gamma_i)</td>
<td>(^3P_1)</td>
<td>1++</td>
<td>(a_1)</td>
<td>(\chi_1(1P))</td>
</tr>
<tr>
<td>(\gamma_i \gamma_j)</td>
<td>(^1P_1)</td>
<td>1+-</td>
<td>(b_1)</td>
<td>(h_c(1P))</td>
</tr>
</tbody>
</table>

\[\Delta M_{\text{hyp}} = 114(1) \text{MeV} \]

Charmonia

DDbar threshold
Status of lattice QCD spectroscopy

\[\begin{align*}
1S_0 & \quad 3S_1 & \quad 1P_1 & \quad 3P_0 & \quad 3P_1 & \quad 1D_2 & \quad 3D_2 & \quad 3D_3 & \quad 1F_3 & \quad 3F_3 \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
& & & & & & & & & \\
\end{align*} \]

Nf=2 Clover

Pion mass \(m_\pi \approx 1.0 \) GeV
lattice cut off \(1/a=2.6 \) GeV

Higher spin and exotic states:
non-local operator
\[
\bar{q}(x) \Gamma U(x, y) q(y)
\]
gauge links

G. Bali, S. Collins, C. Ehmann, PRD84 (2011) 094506
Why back to quark potential models?

∗ Interquark potential in non-relativistic quark potential models

T. Barnes, S. Godfrey and E. S. Swanson, PRD 72, 054026 (2005)

\[
V_{cc} = -\frac{4 \alpha_s}{3} \frac{1}{r} + \sigma r + \frac{32\pi\alpha_s}{9m_q^2} \delta(r) \mathbf{S}_q \cdot \mathbf{S}_\bar{q} + \frac{1}{m_q^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \mathbf{L} \cdot \mathbf{S} + \frac{4\alpha_s}{r^3} T \right]
\]

- Cornell potential
- Spin-dependent potential

• Spin-spin, tensor, LS terms appear as corrections in powers of \(1/m_q\)
• Spin-dependent potentials determined by one-gluon exchange at tree level

→ There are large theoretical ambiguities for higher-mass charmonia

The reliable interquark potential derived from lattice QCD is hence desired at the charm quark mass
Static heavy quark potential from Wilson loops

\[r_0 \approx 0.5 \text{ fm} \]

Lattice QCD exhibits the "Cornell-type potential" at the leading order in \(1/m_Q \) expansion (pNRQCD)

\[V_{Q\bar{Q}}(r) = -\frac{A}{r} + \sigma r + V_0 \]
Static heavy quark potential from Wilson loops

spin-dependent potentials at $O(1/m_Q^2)$ in pNRQCD

Koma-san’s talk
Static heavy quark potential from Wilson loops

But, the result is **not satisfactory**:

- applicability of pNRQCD is **doubtful at the charm mass**
- **quench approximation** (not applicable in full QCD)
- spin-spin potential seems to be “**attractive**”
New approach
Potential from BS amplitude

- Equal-time BS wave function
 \[\phi_\Gamma (\mathbf{r}) = \sum_{\mathbf{x}} \langle 0 | Q(\mathbf{x}) \Gamma Q(\mathbf{x} + \mathbf{r}) | Q \bar{Q} \rangle \]

- Schrödinger eq. with non-local potential
 \[-\frac{\nabla^2}{2\mu} \phi_\Gamma (\mathbf{r}) + \int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') \phi_\Gamma (\mathbf{r}') = E_\Gamma \phi_\Gamma (\mathbf{r}) \]

- Velocity expansion
 \[v = |\nabla/m_Q| \]

- N-N potential

\[U(\mathbf{r}', \mathbf{r}) = \{ V(\mathbf{r}) + V_S(\mathbf{r}) \mathbf{S}_Q \cdot \mathbf{S}_\bar{Q} + V_T(\mathbf{r}) S_{12} + V_{LS}(\mathbf{r}) \mathbf{L} \cdot \mathbf{S} + \mathcal{O}(\nabla^2) \} \delta(\mathbf{r}' - \mathbf{r}) \]

\(\bar{Q}Q \) potential from BS wave func.

- Ikeda-lida, arXiv:1011.2866

\[
\nabla^2 \phi_{\bar{Q}Q}(r) = \frac{\phi_{\bar{Q}Q}(r)}{m_Q} \left[V(r) - E \right]
\]

The quark mass dependence is automatically encoded in the definition of the potential.

There are two key issues:

- Determination of the quark mass \(m_Q \)
- Behavior in the \(m_Q \to \infty \) limit
Novel determination of quark mass

- Kawanai-Sasaki, PRL 107 (2011) 091601

\[
\left\{ -\frac{\nabla^2}{m_Q} + V_{Q\bar{Q}}(r) + S_Q \cdot S_Q V_{\text{spin}}(r) \right\} \phi_{\Gamma}(r) = E_{\Gamma} \phi_{\Gamma}(r) \quad \text{for} \quad \Gamma = \text{PS, V}
\]

Q. How can we determine a quark mass in the Schrödinger equation?

A. Look into asymptotic behavior of wave functions at long distances

\[
V_{\text{spin}}(r) - \Delta E_{\text{hyp}} = \frac{1}{m_Q} \left(\frac{\nabla^2 \phi_V(r)}{\phi_V(r)} - \frac{\nabla^2 \phi_{\text{PS}}(r)}{\phi_{\text{PS}}(r)} \right)
\]

Under a simple, but reasonable assumption of \(\lim_{r \to \infty} V_{\text{spin}}(r) = 0 \)

\[
m_Q = \lim_{r \to \infty} \frac{1}{\Delta E_{\text{hyp}}} \left(\frac{\nabla^2 \phi_{\text{PS}}(r)}{\phi_{\text{PS}}(r)} - \frac{\nabla^2 \phi_V(r)}{\phi_V(r)} \right)
\]
Interquark potential at finite quark mass

- Kawanai-Sasaki, PRL 107 (2011) 091601

\[
m_Q = \lim_{r \to \infty} \frac{1}{\Delta E_{\text{hyp}}} \left(\frac{\nabla^2 \phi_{\text{PS}}(r)}{\phi_{\text{PS}}(r)} - \frac{\nabla^2 \phi_V(r)}{\phi_V(r)} \right)
\]

\[
\lim_{r \to \infty} V_{\text{spin}}(r) = 0
\]

\[
- m_Q \Delta E_{\text{hyp}}
\]
Interquark potential at finite quark mass

- Kawanai-Sasaki, PRL 107 (2011) 091601

\[V_{Q\bar{Q}}(r) = -\frac{A}{r} + \sigma r + V_0 \]

Consistent with the Wilson loops in the \(m_q \to \infty \) limit
Interquark potential at finite quark mass

- Kawanai-Sasaki, PRL 107 (2011) 091601

The BS amplitude method can provide

- quark kinetic mass m_Q
- m_Q dependence of the interquark potential
- spin-dependent potential (spin-spin)

in a self-consistent manner.
Several systematic tests within quenched QCD
Scaling test

at charm mass

central potential

$V(r) \ [\text{GeV}]$

$r \ [\text{fm}]$

$a=0.0931\text{fm} \ \text{coarse lattice}$

$a=0.0677\text{fm} \ \text{fine lattice}$

$L^3 \times T = 24^3 \times 48 \ \text{and} \ 32^3 \times 64$

Discretization error is well under control
Scaling test

at charm mass

spin-spin potential

\(\beta = 6.0, \ 6.2 \)

\(V(r) \) [GeV]

\(r \) [fm]

\(a=0.0931\text{fm} \) coarse lattice

\(a=0.0677\text{fm} \) fine lattice

\(L^3 \times T = 24^3 \times 48 \) and \(32^3 \times 64 \)

Discretization error is well under control
Scaling test

spin-spin potential

$\beta = 6.0, 6.2, 6.47$

$V(r) [\text{GeV}]$

$r [\text{fm}]$

$a=0.0931\text{fm}$ coarse lattice

$a=0.0677\text{fm}$ fine lattice

$a=0.0469\text{fm}$ hyper fine lattice

fixed spacial size: $L \sim 2.2 \text{ fm}$

$L^3 \times T = 24^3 \times 48, 32^3 \times 64 \text{ and } 48^3 \times 96$
Lattice QCD simulations

$V(r) = V_{cc}(r) + S_Q \cdot S_{\bar{Q}} V_{\text{spin}}(r)$

$V_{\text{spin}}(r) \propto \nabla^2 V_{cc}(r)$

Our approach

Wilson loop approach

at charm mass

repulsive

Note: $M(0^-) < M(1^-)$

Y. Koma and M. Koma, NPB769 (2007) 79
Test of finite spacial size effect

$L^3 \times T = 24^3 \times 48 \text{ and } 32^3 \times 48$

$V(r) \text{ [GeV]}$

$r \text{ [fm]}$

$\beta = 6.0 \ (a = 0.093\text{fm})$

$L = 2.2\text{fm small lattice}$

$L = 3.0\text{fm large lattice}$
Full QCD at the physical point
Tuning RHQ parameters for **full QCD**

- RHQ action (Tsukuba-type) with 5 parameters
 - PACS-CS configurations at $m_\pi=156$ MeV
 - Relativistic Heavy Quark (RHQ) action for charm
 - $32^3 \times 64$ lattice
 - $a = 0.0907(13)$ fm
 - $L_a \sim 2.9$ fm
 - 198 configs

\[\frac{1}{4} (M_{\eta_c} + 3M_{J/\psi}) = 3.070(1) \text{ GeV} \]

\[\Delta M_{\text{hyp}} = 114(1) \text{ MeV} \]

- $c_{\text{eff}}^2 = 1.04(5)$

Namekawa et al., (PACS-CS), arXiv:1104.4600
How to treat heavy quarks

- Heavy quark mass introduces discretization errors of $O((ma)^n)$

- At charm quark, it becomes severe:

 $m_c \sim 1.5$ GeV and $1/a \sim 2$ GeV, then $m_c a \sim O(1)$

- Relativistic heavy quark (RHQ) approach:

- All $O((ma)^n)$ and $O(a\Lambda)$ errors are removed by the appropriate choice of six canonical parameters $\{m_0, \zeta, r_t, r_s, C_B, C_E\}$

 $$S_{\text{lat}} = \sum_{n,n'} \bar{\psi}_n K_{n,n'} \psi_{n'}$$

 explicit breaking of axis-interchange symmetry

 $$K = m_0 + \gamma_0 D_0 + \zeta \gamma_i D_i - \frac{r_t}{2} D_0^2 - \frac{r_s}{2} D_i^2 + C_B \frac{i}{4} \sigma_{ij} F_{ij} + C_E \frac{i}{2} \sigma_{0i} F_{0i}$$

- We follow the Tsukuba procedure to determine parameters

 S. Aoki, Y. Kuramashi, S.-I. Tominaga (1999)
Charmonium potential from full QCD

- Kawanai-Sasaki, PRD85 (2012) 091503(R)

* PACS-CS configurations at $m_\pi=156$ MeV

\[V(r) = -\frac{A}{r} + \sigma r + V_0 \]

- $A_{c\bar{c}} = 0.813(22)$
- $\sqrt{\sigma_{c\bar{c}}} = 0.394(7)$ GeV
- $A_\infty = 0.403(10)$
- $\sqrt{\sigma_\infty} = 0.462(2)$ GeV

Polyakov line correlator (off-axis)
Polyakov line correlator (on-axis)
BS wave function (off-axis)
BS wave function (on-axis)
Charmonium potential from full QCD

Spin-independent $c\bar{c}$ potential

- Lattice data
- NRp model

```
V(r) [GeV]
0.5
0
-0.5
-1
-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 r [fm]
```

- lattice results
 - $A_{c\bar{c}} = 0.813(22)$
 - $\sqrt{\sigma_{c\bar{c}}} = 0.394(7)$ GeV

- NR quark model
 - $A_{NRp} = 0.7281$
 - $\sqrt{\sigma_{NRp}} = 0.3775$ GeV

Spin-spin $c\bar{c}$ potential

- Lattice data
- NRp model

```
V_s(r) [GeV]
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 r [fm]
```

- good agreement
- large difference

Refinement of spin-dependent potentials

→ change the fine structure of charmonia

Kawanai-Sasaki, PRD85 (2012) 091503(R)

<table>
<thead>
<tr>
<th>functional form</th>
<th>α</th>
<th>β</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yukawa-type</td>
<td>0.287(8) GeV</td>
<td>0.894(32) GeV</td>
<td>7.28</td>
</tr>
<tr>
<td>Exponential-type</td>
<td>0.825(19) GeV</td>
<td>1.982(24) GeV</td>
<td>1.46</td>
</tr>
<tr>
<td>Gaussian-type</td>
<td>0.314(4) GeV</td>
<td>1.020(11) GeV^2</td>
<td>22.79</td>
</tr>
</tbody>
</table>

Non-relativistic potential model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026
Spin-spin potential from full QCD

finite-range repulsive potential

Non-relativistic potential model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026
\[\Delta M_{\text{hyp}}(S-\text{wave}) = 47.3(3) \text{ MeV} \]

\[\Delta M_{\text{hyp}}(\text{Exp.}) = 69.3(2.8) \text{ MeV} \]
spin-spin $b\bar{b}$ potential from full QCD

very preliminary

needs a confirmation through lattice cutoff dependence studies
Summary

- **New method to calculate QQ^{bar} potential at finite quark mass**
 - We propose a self-consistent determination of quark mass from the BS wave function
 - We confirm that spin-independent potential is consistent with the Wilson loop result in the m_Q → ∞ limit
- **Application to determine charmonium potential in full QCD**
 - Central potential resembles the NRp model
 - Spin-spin potential properly exhibits the short range repulsive interaction
 - Bottomonium potential (now under way)

→ Improves interquark potentials from lattice QCD
→ Refines a guideline of “exotic” quarkonia XYZ
Backup Slides
Rough estimates with lattice inputs

\[V_{Q\bar{Q}}(r) = -\frac{A}{r} + \sigma r + V_0 \]

Coulomb part:

\[E_C^n = 2m_c + V_0 - \frac{A^2}{2n^2m_c} \]

Linear part:

\[E_L^n = 2m_c + V_0 + \lambda_n \left(\frac{\sigma^2}{m_c} \right)^{\frac{1}{3}} \]

\[\lambda_1 = 2.388, \ \lambda_2 = 4.088 \quad \text{roots of Airy function} \]

Full QCD inputs

\[\begin{align*}
A &= 0.861(17) \\
\sqrt{\sigma} &= 0.394(7) \text{ GeV} \\
V_0 &= -0.059(15) \text{ GeV} \\
m_c &= 1.74(3) \text{ GeV}
\end{align*} \]
Rough estimates with lattice inputs

\[V_{Q\bar{Q}}(r) = -\frac{A}{r} + \sigma r + V_0 \]

Full QCD inputs

\[
\begin{align*}
A &= 0.861(17) \\
\sqrt{\sigma} &= 0.394(7) \text{ GeV} \\
V_0 &= -0.059(15) \text{ GeV} \\
m_c &= 1.74(3) \text{ GeV}
\end{align*}
\]

Coulomb part:

\[E_{1S} = 2.78 \text{ GeV}, \quad E_{2S} = 3.26 \text{ GeV}, \quad \Delta E_{2S-1S} = 0.484 \text{ GeV} \]

Linear part:

\[E_{1S} = 3.99 \text{ GeV}, \quad E_{2S} = 4.40 \text{ GeV}, \quad \Delta E_{2S-1S} = 0.408 \text{ GeV} \]

\[E_{1S}^{\exp} = 3.07 \text{ GeV}, \quad E_{2S}^{\exp} = 3.67 \text{ GeV}, \quad \Delta E_{2S-1S}^{\exp} = 0.606 \text{ GeV} \]
Results from charmonium potential given by matching perturbative and lattice QCD

lattice QCD inputs

\[V_c(r), \ V_S(r) \text{ for } r \geq 0.14 \text{ fm} \]
with \(m_c = 1.74(3) \text{ GeV} \)

pQCD inputs

\[V_c(r), \ V_S(r) \text{ for } r \leq 0.14 \text{ fm} \]

\[\overline{m_c^{MS}} (\mu = \overline{m_c^{MS}}) = 1.21(4) \text{ GeV} \]