NINJA Experiment: Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

Tsutomu Fukuda (Nagoya Univ.)
on behalf of the NINJA collaboration

Contents

- Introduction
- Nuclear Emulsion Technology
- NINJA Experiment

Profile:福田 努

2000年 OPERA実験が正式に承認。

検出器準備

▶2003年~ OPERAフィルムの大量生産開始。 東濃鉱山地下にてRefresh処理。

解析体制準備

2005年~ KEK, Fermi Labでテスト実験開始。
→ OPERAの解析リハーサルを実施。

ニュートリノビーム照射

2006年 CERNからニュートリノビームのテスト 照射。OPERAで初めて原子核乾板上 にニュートリノ反応からの飛跡を検出。

2008年~検出器完成。ニュートリノビーム本格照射。 OPERA実験本番開始。

2010年 1st タウニュートリノ反応候補検出。 2012年 2nd タウニュートリノ反応候補検出。

Summary Evidence for Vu oscillations Vu > VL 90X C.L. TO 2 10 SK UP M Kam UP M Containe SK Containe

CERN [62].

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

Flight length

 $960 \pm 30 \,\mu \,\mathrm{m}$

daughter

identified as a proton by dE/dx analysis [26]

A. Aleksandrov,² A. Anokhina,³ S. Aoki,⁴ A. Ariga,⁵ T. Ariga,⁵ D. Bender,⁶ A. Bertolin,⁷ I. rugnera,^{7,10} A. Buonaura,^{2,11} S. Buontempo,² B. Büttner,¹² M. Chernyavsky,¹³ A. Chukanov,⁸ G. De Lellis,^{2,11} M. De Serio,^{15,16} P. Del Amo Sanchez,¹⁷ A. Di Crescenzo,² D. Di S. Dmitrievski,⁸ M. Dracos,¹⁹ D. Duchesneau,¹⁷ S. Dusini,⁷ T. Dzhatdoev,³ J. Ebert,¹² F. Fornari,^{18,20} T. Fukuda,²¹ G. Galati,^{2,11} A. Garfagnini,^{7,10} J. Goldberg,²² Y. Gornushkin,⁸ G. Galati,^{2,11} A. Garfagnini,^{7,10} J. Goldberg,²² Y. Gornushkin,⁸ G. Galati,⁸ G. Galati,^{8,10} A. Garfagnini,^{8,10} G. Goldberg,⁸ G. Granushkin,⁸ G. Galati,^{8,10} G. Galati,^{8,11} A. Garfagnini,^{8,10} G. Goldberg,^{8,11} G. Gornushkin,⁸ G. Galati,^{8,11} A. Garfagnini,^{8,10} G. Goldberg,^{8,10} G. Granushkin,^{8,10} G. Galati,^{8,11} A. Garfagnini,^{8,10} G. Goldberg,^{8,10} G. Granushkin,^{8,10} G. Galati,^{8,10} G. Galati,^{8,}

Scientific Background on the Nobel Prize in Physics 2015

NEUTRINO OSCILLATIONS

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

"For the greatest benefit to mankind"

alped Vodel

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita Arthur B. McDonald

Super-Kamiokande's oscillation results were confirmed by the detectors MACRO [55] and Soudan [56], by the long-baseline accelerator experiments K2K [57], MINOS [58] and T2K [59] and more recently also by the large neutrino telescopes ANTARES [60] and IceCube [61]. Appearance of tau-neutrinos in a muon-neutrino beam has been demonstrated on an event-by-event basis by the OPERA experiment in Gran Sasso, with a neutrino beam from

"発見"から

"精密測定"

原子核乾板

Nuclear Emulsion

What is Nuclear Emulsion?

3D tracking detector with submicron position accuracy

Photographic Film technology

- Nuclear Emulsion is a special photographic film.
- Signal is amplified by chemical process.

	Merit	Image detection		
Film camera	High resolution	ハロゲン化銀(Sliver halide) 光のエネルギーが起こす化学変化を利用した光化学反応。		
Digital camera	Real time	電荷結合素子(Charged-Coupled Device) 光のエネルギーを電気エネルギーに変換する光電変換。		

Largest Digital Camera
ATLAS detector
(~1.6 x 10⁸ image sensors)

Largest Film Camera
OPERA detector
(~10²⁰ AgBr crystals)

1

9000,000 emulsion films

Contribution for fundamental physics...

1947

1896 (A. H. Becquerel)
Discovery of Radioactivity

1947 (C. F. Powell et al.)

Discovery of π

1971 (K.Niu et al.)

Discovery of charm particle in cosmic-ray

2001 (K.Niwa et al.)

Direct observation of V_{τ}

Nuclear Emulsion Detector

3D reconstruction

Scalability

4π detection

Ultra precise measurement

0.8GeV/c π : P =0.79(GeV/c), dP/P =11%

1.5GeV/c π : P=1.53(GeV/c), dP/P =**16**%

Momentum, dE/dx measurement

Nuclear Emulsion Detector

Nuclear Emulsion Detector

Nuclear spallation reaction by heavy ion

100 µm

Spatial resolution

- silver halide crystal size
- number density of silver halide crystal

Sensitivity

- Chemical treatment
- Crystal defect and doping etc.

Readout of tracks in Emulsion

Microscope view

Sensitivity
35 silver grains /100µm

Long history in Neutrino Research

• 1978-1983 Fermilab E531 charm physics, $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation

- ~ 100kg <20GeV>
- 1994-2000 CERN WA95 CHORUS $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation, charm physics
- ~ 1 ton
 <27GeV>

- 1997-2001 Fermilab E872 DONuT first v_{τ} direct observation
- ~ 1 ton
 <80GeV>
- 2008- CERN CNGS01 OPERA $\nu_{\mu} \rightarrow \nu_{\tau} \mbox{ oscillation}$
- 1250 ton <17GeV>

Recent technical improvements

Readout technique

High Speed Scanning

HTS 9,000cm²/h, x100 faster

Large angle tracking technique

Detector technique

High Sensitive film

Time resolution

Charge sign ID

Gel Production Machine at Nagoya Univ.

Chemical reaction
AgNO₃+NaBr
→
AgBr↓+NaNO₃

Injection speed
Mixing speed
Temperature

Crystal size
Crystal shape

Sensitivity Stability

chemical

NINJA Experiment

Current situation on neutrino physics

この他にも多くの実験が計画・実施・遂行されている。

Motivation

- Precise neutrino-nucleus interaction measurement is important to reduce the systematic uncertainty in future neutrino oscillation experiments.
- We started a new experiment at J-PARC to study low energy neutrino interactions by introducing nuclear emulsion technique.
- The emulsion technique can measure all the final state particles with low energy threshold for a variety of targets (H₂O, Fe, C,...).
- Furthermore its ultimate position resolution allow to measure
 v_e cross section and to explore of a sterile neutrino.

Precise measurement of neutrino-nucleus interactions

• CCQE interaction events are used as signal to reconstruct energy in T2K/SK. $m_n^2 - (m_n - V)^2 - m_n^2 + 2(m_n - V)E_n$

$$E_{QE} = \frac{m_p^2 - (m_n - V)^2 - m_\mu^2 + 2(m_n - V)E_\mu}{2((m_n - V) - E_\mu + p_\mu \cos \theta_\mu)}$$

- Other interaction modes contaminate due to final state interaction in nucleon and detector inefficiency.
- Energy can't be reconstructed correctly with these interaction modes.
 - → Need precise understanding about neutrino interaction.

uncertainties on predicted events at SK						
	$ u_{\mu} $ sample $ 1 $ R $_{\mu}$ FHC	v_e sample 1R _e FHC	$ar{ u}_{\mu}$ sample ${f 1R}_{\mu}$ RHC	$\bar{\nu}_e$ sample 1R _e RHC		
ν flux w/o ND280	7,6%	8,9%	7,1%	8,0%		
u flux with ND280	3,6%	3,6%	3,8%	3,8%		
ν cross-section w/o ND280	7,7%	7,2%	9,3%	10,1%		
ν cross-section with ND280	4,1%	5,1%	4,2%	5,5%		
ν flux+cross-section	2,9%	4,2%	3,4%	4,6%		
Final or secondary hadron int.	1,5%	2,5%	2,1%	2,5%		
Super-K detector	3,9%	2,4%	3,3%	3,1%		
Total w/o ND280	12,0%	11,9%	12,5%	13,7%		
Total with ND280	5,0%	5,4%	5,2%	6,2%		

uncertainties on predicted events at SK

2p-2h interaction in CCQE samples (Meson Exchange Current: MEC)

NINJA 実験

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

原子核乾板は、MEC反応を測定する極めて有効な手段

ニュートリノ反応の精密測定

v exposure status of NINJA

- Emulsion handling @J-PARC
- Demonstration of v event detection
- Hybrid analysis with T2K near detector
- v– Water interaction detection with Emulsion Detector
- We have demonstrated the basic experimental concept at J-PARC site.
- "Detector performance run" was started from last Jan.

NINJA Roadmap

Preliminary measurements RUN

Feasibility study at J-PARC

J-PARC T60/T66 experiment

Detector RUN

Detector performance check

Target mass: 30-60kg

Physics RUN I

Future plan

Neutrino-nucleus interaction study

Target mass: 100-300kg

Physics RUN II

Search for sterile neutrino

Target mass: 1- 3ton
Target mass: 6-10ton

- The aim of T60/T66 is a feasibility study and detector performance check to make a future plan.
- We will expand the scale of detector gradually, step by step.

Emulsion gel production in the lab

Nuclear emulsion films were made by ourselves.

@Nagoya Univ.

Signal efficiency → Grain density Isolated random noise → Fog density

Initial performance for each production batch

Initial and long-term performance of new emulsion gel is kept at safety level for signal and noise.

Shifter

Conceptual detector design

SS floor @J-PARC (Jan. 2015)

Emulsion Module

andwich structure of

2kg iron target ECC

- Emulsion Cloud Chamber is a sandwich structure of emulsion films and iron plates.
- Emulsion detector is placed in front of T2K near detector, INGRID.
- Emulsion Shifter is re-used from GRAINE project to give a timing info. to emulsion tracks.
- Muon ID is possible by combined analysis with INGRID.

 $(1.4 \leq |\tan\theta|)$

Plate ID

Reconstructed track data

All emulsion films were scanned by HTS. First of all, noise tracks were rejected by evaluating the quality of each tracks. Then tracks were reconstructed.

Track reconstruction

- Two base track segments are tried to be connected assuming cut off momentum.
- They are connected if the position and angular difference within the allowance.
 - Position difference between two segments extrapolating at middle place.
 - Angular difference

Continue to all possible combination of two tracks → all tracks are reconstructed.

Event analysis sample

Systematic emulsion analysis

Momentum measurement

$$\theta_0 = \frac{13.6}{(pc\beta)} \times \sqrt{\frac{x}{X_0}} \times \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right)\right]$$

Interacted in emulsion region

Proton Identification

Time stamp for v event with Emulsion Shifter

Emulsion films are set on moving stages controlled by stepping motor.

Time stamp is given by coincidence of tracks on each stage.

- → Position difference from reference point
 - = Timing information

Emulsion-INGRID Hybrid analysis

Time resolution for emulsion tracks

v exposure in May 2015.

Water target emulsion detector

First detection of v - Water interaction with Emulsion Detector

Detector Run

We are starting Detector Run to compare MC with high statistics.

- very exposure : 2016 @SS floor end of Jan. → beam end
- Iron target (total~60kg : 500 μ m seg.)
- High statistics (3-4k v alpha events)
- ν_e detection (20-30 $\overline{\nu}_e$ CC events)
- → Data MC comparison with high statistics to check the performance.

Detector construction

Detector preparation

Emulsion film production 2015. July→Oct.

By Toho Univ. & Nihon Univ. member @Nagoya Univ.

V beam exposure Hardware treatment and Scan

Detector construction v beam exposure Ha

v beam exposure Hardware treatment and Scan

Detector installation

Detector construction

v beam exposure Hardware treatment and Scan

Condition of the emulsion film

Detector construction

v beam exposure Hardware treatment and Scan

Development process

XAA Stop

Fix

Wash

2. Surface silver cleaning

More than 300 films were completed.

Data quality check and track reconstruction is under progress.

0.1

Plate ID

Status review of NINJA

Event analysis is now in progress!

Examples of neutrino event one by one

Detector Run(T66)

v beam exposure: Dec. 2016- Apr.2017

- R&D for Water target Emulsion detector

大型水標的検出器によるニュートリノー水反応の精密測定に向けて検出器R&Dを継続中 2018年後半に100kg 級の検出器を設置予定。

Summary

- We are performing a neutrino experiments at J-PARC to study low energy neutrino - nucleus interactions with nuclear emulsion (NINJA!).
- We are carrying out a test experiment at J-PARC to check the feasibility and detector performance.
- Beam exposure and film development for the 60kg iron target ECC was successfully done and the event analysis is now in progress.
- R&D for Water target ECC is performing.
- Now we are discussing about next Physics Run with a large scale water target emulsion detector.

Back up

Water target emulsion chamber

1	$(\tan\theta x, \tan\theta y) = (-0.040, 0.845)$	M.I.P
2	$(\tan\theta x, \tan\theta y) = (-0.589, -0.074)$	proton

Minimum distance(1) - 2)=2.4um, depth=620um

First detection of v - Water interaction with Emulsion Detector

Detector preparation

We carried out "Refresh" process to delete noise tracks like OPERA experiment.

Emulsion film Refresh 2015. Dec @Toho Univ.

Installation @J-PARC (Jan. 11-20)

Detector was constructed @SS floor.

T60 emulsion detector is mounted in cooling box to keep good quality (no refresh).

Large angle scanning on HTS

Related activity

Workshop on Hadron Production Measurements with Nuclear Emulsions

Information

3-4 October 2016

