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Introduction
++ Quantum physics ++

   ■ Quantum physics dominates various microscopic phenomena 
      less than the atomic scale. 
   --> Quantization is the key to describe phenomena from viewpoint 
        of microscopic dynamics. 
   --- The uses of quantum mechanics, quantum field theories, ...
   ■ Feynmanʼs path integral: one elegant way to the quantization. 

Feynman, Rev. Mod. Phys. 20 (1948) 367. 

   --- All possible paths are taken into account 
       with the probability amplitude exp(-S) 
       (S is action of the system). 
   --- Path integrals can also be used in 
       quantum field theories as perturbative
       and non-perturbative techniques. 

Z =
�
Dq exp(−S[q]),

�
Dq =

�

τ

dq(τ)
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Introduction
++ Time discretization for path integral ++

   ■ Path integrals can be simplified by discretizing time(-space). 
     ● Derivation and integration --> finite difference and summation. 
     ● Easier to evaluate analytically and numerically. 
   ■ Lattice QCD is one of the most important 
      example of the discretized path integrals.

                                      Wilson, Phys. Rev. D10 (1974) 2445. 
   --- Many non-perturbative aspects of QCD 
       has been revealed from analytic and 
       numerical discussions on lattice QCD. 
   ■ But discretized theory is not continuum theory.
     ● Breaks time-space continuous symmetries 
        down to discretized symmetries (e.g. translational symmetry).
     ● Leads to qualitative discrepancies:
        doubler in the Dirac field, magnetic monopoles in lattice QED, ...

                                 Wilson (1975).                                     Polyakov, Phys. Lett. B59 (1975) 82.
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Introduction
++ More physics from path integrals ++

   ■ How can we extract, especially in quantum field theories,
      more (non-perturbative) quantum physics from path integrals ?
     1. Make discretized approach close to the continuum theory.
     --- Small lattice spacing a, improved action, small quark mass, ...
     --> Precise determination of properties of QCD vacuum, 
          excited states (hadrons), hadron interactions, ...
     2. Simulation in continuum time-space without discretization???
     --- Can we create (approximate) an approach to
          continuum path integrals?                                          ???
     --- It could be complementary 
         (相補性) for the lattice 
         simulations of quantum 
         field theories. 
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Basic ideas
++ Discretized approach ++

   ■ Review of discretized approach to simulations of path integrals.
Creutz and Freedman, Ann. Phys. 132 (1981) 427.

     1. Consider additional fluctuation (change) of particle position at 
         time j , which we denote δqj , as a randomly-determined value:

     2. The additional fluctuation is judged by the Metropolis test:
         δqj is accepted in probability    Metropolis et al., J. Chem. Phys. 21 (1953) 1087.

         Then if and only if δqj is accepted, we redefine
         qj + δqj as qj. This gives weight exp(-S).
     3. After several “sweeps”, i.e., performing steps 
         1 and 2 from j=1 to Nlat, quantum paths in
         equilibrium with weight exp(-S) are obtained.

δqj ∈ [−∆,∆] (∆: a fixed value)

min[1, exp(S[q]− S[q + δq])]
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Basic ideas
++ Discretized approach ++

   ■ Review of discretized approach to simulations of path integrals.
Creutz and Freedman, Ann. Phys. 132 (1981) 427.

   --> 3 lessons from the discretized approach: 
     i) Every time j is equally treated without making any special time.
    ii) Micro-reversibility for additional fluctuation δqj :
        without making any specific directions.
   iii) δqj is judged by the Metropolis method
        (or others) to give weight exp(-S) to the paths. 

   ■ Indeed, with above 3 points we can create
      a procedure for the discretized path integrals
      which leads to quantum paths in equilibrium. 
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Basic ideas
++ Our approach to continuum theory ++

   ■ We develop our approach to the continuum path integrals.
   --- Describe paths by sum of Gauss functions with weight exp(-S). 

   <-- Fluctuations approximated by the Gauss functions.

   ■ We need the constant set (qi, τi, ξi): 
     ● qi: amplitude of each fluctuation. 
     ● τi: time component of each fluctuation. 
     ● ξi: width (scale) of each fluctuation.
            (corresponds to the lattice spacing a) 
   --- Determine so as to give weight exp(-S).

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�
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Basic ideas
++ Our approach to continuum theory ++

   ■ Lessons from discretized approach:
     i) Every time is equally treated.      ii) Micro-reversible δqj.
   iii) Metropolis test for weight exp(-S).
   ■ Our approach to construct smooth path:

     1. Determine initial smooth path. 
     2. Construct additional fluctuation δq(τ) with (qi, τi, ξi) generation:

     --- Uniformity is key to lessons i) and ii). 
         Especially δq(τ) is micro-reversible!

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

δq(τ) = qi exp
�
− (τ − τi)2

ξ2
i

�






qi ∈ [−Λq, Λq], generated in uniform probability
τi ∈ [0, T ], generated in uniform probability
ξi: fixed in this study
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Basic ideas
++ Our approach to continuum theory ++

   ■ Lessons from discretized approach:
     i) Every time is equally treated.      ii) Micro-reversible δqj.
   iii) Metropolis test for weight exp(-S).
   ■ Our approach to construct smooth path:
     3. Additional fluctuation δq(τ) 
        

         is judged by the Metropolis test.  If and only if δq(τ) is accepted, 
         we redefine q(τ) + δq(τ) as q(τ).
     --- Key to lesson iii). 
     4. Iterate steps 2 and 3 until the action (and others) converges.
   --> Eventually we obtain smooth path as 
         sum of δq(τ), i.e. in the following form: q(τ) =

�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

δq(τ) = qi exp
�
− (τ − τi)2

ξ2
i

�
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Basic ideas
++ Our approach to continuum theory ++

   ■ Our approach to construct smooth paths is summarized as:
     1. Determine initial smooth path. 
     2. Construct additional fluctuation δq(τ):
     3. Additional fluctuation δq(τ) is judged by the Metropolis test.  
         If and only if δq(τ) is accepted, we redefine q(τ) + δq(τ) as q(τ).
     4. Iterate steps 2 and 3 until the action (and others) 
         converges.

   --> Obtain smooth path: 

   ■ Expression of paths (fluctuations) only by certain function
      (the Gauss function in this study) is an “approximation”. 
   --> We give weight exp(-S) to paths of such an expression.
     --- How good is this expression?

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

δq(τ) = qi exp
�
− (τ − τi)2

ξ2
i

�
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Results for particles
++ Harmonic oscillator in d=1 ++

   ■ Let us examine our approach with harmonic oscillator in d=1: 

     with our smooth paths: 

   ■ Here we fix m=ω=1, and take periodic boundary condition with:
      Time range T=200, fluctuation cut-off Λq=3, and width ξ=1.3. 
      (ξ is fixed as the peak position of ξ-histogram in random ξ case).
   ■ We take a “hot start” by randomly generating 400 (qi, τi, ξi) sets,
      and prepare N=100 paths for the statistical treatment. 
   ■ Temperature of system =1/T=1/200 < < ω=1. 
   --> Our paths will reflect ground state of the harmonic oscillator: 
                                            -->

SHO =
� T

0
dτLHO(q, q̇), LHO(q, q̇) =

1
2
mq̇2 +

1
2
mω2q2

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

ψGS(q) =
�

1
π

�1/4

exp
�
−q2

2

�
�q2�GS = 0.5,

�
K

�
≡ 1

2
q̇2

��

GS

=
�

V

�
≡ 1

2
q2

��

GS

= 0.25
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Results for particles
++ Harmonic oscillator in d=1 ++

   ■ Cooling behavior of harmonic oscillator in d=1 
      with our smooth paths: 

   ■ Lagrangian, kinetic, and potential expectation values converge 
      around Niteration ~ 6 x 103
      with ~ 2000 Gauss function.
   ■ After Niteration = 104, we have
      < K > = 0.286 ± 0.003, 
      < V > = 0.200 ± 0.002.
    <-->

   ■ We can reproduce quantum 
      values of harmonic oscil-
      lator with 80-90% accuracy.

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

�K�GS = �V �GS = 0.25
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Results for particles
++ Harmonic oscillator in d=1 ++

   ■ Example of the quantum fluctuation
     (right figure, up to τ=50).
   <-- Expression: 

   --- q(τ) fluctuates from zero to ~ ± 2, but 
        within |q| ~ 1 at most times. 
        (< q2 > = 0.400 ± 0.005)
   --- Peak structures with width ~ 3.

   ■ Visualize degree of quantum
      fluctuation as q-distribution. 
   --> Our q-distribution behaves similarly
         compared to the squared ψGS. 

q(τ) =
�

i

qi exp
�
− (τ − τi)2

ξ2
i

�

<

<
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Results for particles
++ Summary for harmonic oscillator ++

   ■ Discussions on harmonic oscillator
      indicate that our approach qualitatively 
      reproduces quantum behaviors of
      the system with 80-90% accuracy, 
      even though paths are expressed only
      by the Gauss function. 
   --- Our approach is approximate evalua-
        tion, but gives qualitative
        results. q(τ) =

�

i

qi exp
�
− (τ − τi)2

ξ2
i

�
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Results for fields
++ Quantum fluctuations for fields ++

   ■ We can apply our approach of the continuum path integrals
      also to quantum fluctuations for fields. 

   ■ Additional fluctuations for fields rather than 
      particles: 
   --- The only difference is
       number of components for xi.

   ■ Here we assume periodic boundary condition for finite 4D box, 
      (X, X, X, T).  

Z =
�
Dφ exp(−S[φ]), Dφ ≡

�

x

dφ(x)

δφ(x) = φi exp
�
− (x− xi)2

ξ2
i

�
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Results for fields
++ Our approach to continuum theory ++

   ■ Our approach to construct smooth “path” for fields:
     1. Determine initial smooth path. 
     2. Construct additional fluctuation δφ(x):
         Constant set (φi, xi, ξi) is generated as:

     3. Additional fluctuation δφ(x) is judged by the Metropolis test.  
         If and only if δφ(x) is accepted, we redefine φ(x) + δφ(x) as φ(x).
     4. Iterate steps 2 and 3 until the action (and others) 
         converges.
   --> Obtain smooth “path”: 
   ■ Again, expression of fluctuations only by certain function  
      (the Gauss function in this study) is an “approximation”. 

δφ(x) = φi exp
�
− (x− xi)2

ξ2
i

�

φ(x) =
�

i

φi exp
�
− (x− xi)2

ξ2

�






φi ∈ [−Λφ, Λφ], generated in uniform probability
xi ∈ (X , X , X , T ), generated in uniform probability
ξi: fixed in this study —corresponds to the minimal scale
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Results for fields
++ Our approach to continuum theory ++

   ■ Our approach to construct smooth “path” for fields:

   ■ However, there is one obstacle for fields: 
      we will need ~ 1013 Gauss functions for fields in d=4.
      (cf. ~ 2000 Gauss functions for particles in d=1). 
   --- Hard to numerically calculate with ~ 1013 Gauss functions.
   --> We restrict xi on sites of 4D lattice dividing the 4D box in same
         intervals so that number of the Gauss functions unchanged.
     --- Another approximation in our approach.
     --- cf. randomly-chosen points in the 4D box for xi.

φ(x) =
�

i

φi exp
�
− (x− xi)2

ξ2

�



Future Prospects of Hadron Physics  @  J-PARC  (2012. 2. 9-11) 18

Results for fields
++ U(1) and SU(2) gauge theories ++

   ■ Apply our approach to U(1) and SU(2) gauge theories in d=4:

     with our smooth paths: 

   --- In this study we do not include gauge fixing terms nor ghosts.
   --> Our approach takes into account contributions from all of the 
         gauge copies within the fluctuation cut-off ΛA.
   ■ Here we take conditions:
      4D box size T=2X with xi-site lattice (Nx, Nt)=(7, 14), 
      fluctuation cut-off ΛA=1.3 ξ-1, and scale ξ=X/(Nx√π). 
   ■ We take a “hot start” by randomly generating Ai at every site xi
      and prepare N=50 paths for the statistical treatment. 

S =
�

d4xL(x), LU(1) =
1
4
(∂µAν − ∂νAµ)2, LSU(2) =

1
4

�
∂µAa

ν − ∂νAa
µ + g�abcA

b
µAc

ν

�2

A(a)
µ (x) =

�

iµ(a)

Aiµ(a) exp
�
−

(x− xiµ(a))
ξ2

�
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Results for fields
++ Quantum fluctuation of U(1) gauge field ++

   ■ Example of quantum fluctuation of U(1) gauge field 
      (A0 at certain x2 and x3)

   ■ We can calculate potential
      between fundamental repre-
      sentation and its anti-particle 
      via expectation value of 
      the Wilson loop, 

 Wilson, Phys. Rev. D10 (1974) 2445. 

   ■ Here we use electric charge e=0.303 for U(1) so that α~1/137. 
      Furthermore, we calculate average of 10 Wilson loops in each 
      path for enough statistics. 

WU(1)(C) = exp
�
ie

�

C
dxµAµ(x)

�
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Results for fields
++ Quantum fluctuation of U(1) gauge field ++

   ■ Example of quantum fluctuation of U(1) gauge field 
      

   ■ From the Wilson loop we can 
      reproduce the Coulomb force.
   --- Not so clear results.
     <-- Intrinsic qualitativeness of our
          approach (“approximations”) 
          + not enough statistics. 
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Results for fields
++ Quantum fluctuation of SU(2) gauge field ++

   ■ In a similar way calculate SU(2) potential from the Wilson loop:
                                                             [coupling g=3.5 for SU(2)]

   --- SU(2) potential in our approach deviates from the one-gluon 
       exchange potential, but shows confining linear potential ! 

WSU(Nc)(C) =
1

Nc
trP exp

�
ig

�

C
dxµAa

µ(x)T a

�
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Results for fields
++ Quantum fluctuation of SU(2) gauge field ++

   ■ Behavior of the SU(2) string tension with respect to coupling g:
      

   --- Consistent with the renormalization group prediction: 

   --> Supports that our approach approximately describes 
        the ground state of SU(2) gauge theory.

σSU(2) × ξ2 ∝
�

24π2

11g2

�102/121

exp
�
−24π2

11g2

�
.
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Summary
++ Summary ++

   ■ We have developed an approach to the simulations of
      the continuum path integrals. 
   --- Paths (fluctuations) are described by sum of smooth functions
        with weight exp(-S) by the Metropolis method. 
   <-- Expression by certain function is an approximation.
   ■ We obtain qualitative results with 80-90% accuracy on quantum 
      behaviors of harmonic oscillator in d=1. 
   ■ We have evaluated quantum fluctuations of fields, 
      fixing the fluctuation position xi --- another approximation. 
   ---> The Coulomb force and confining linear potential are 
      extracted from the U(1) and SU(2) gauge fields in d=4 via Wilson 
      loops, respectively, at qualitative levels.
   --- Behavior of the SU(2) string tension is consistent with the 
        renormalization group prediction.
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Summary
++ Outlook ++

   ■ More precise calculations for quantum systems. 
   --- By using “better” smooth functions such as “complete set”, ...
   ■ Our results are at qualitative levels.
   --- Intrinsic qualitativeness of our approach (with Gauss functions)
       + not enough statistics (for quantum field theory). 
   --> Our approach could be complementary (相補性) for the lattice
         simulations: 
         Lattice -- Uμ   vs.   Our approach -- Aμ.
         --> Our approach might be useful to investigate 
               dynamics for non-perturbative fields such as confinement,
               spontaneous chiral symmetry breaking.
               (cf. Instantons and monopoles can be directly described 
                     in terms of gauge fields Aμ rather than link variable Uμ.)
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Appendix
++ Our approach to continuum theory ++

   ■ Our approach to construct smooth path:
     1. Determine initial smooth path. 
     2. Construct additional fluctuation δq(τ):
     3. Additional fluctuation δq(τ) is judged by the Metropolis test.  
         If and only if δq(τ) is accepted, we redefine q(τ) + δq(τ) as q(τ).
     4. Iterate steps 2 and 3 until the action (and others) 
         converges.

      ex.)

                                                                                                        ... 

δq(τ) = qi exp
�
− (τ − τi)2

ξ2
i

�
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Appendix
++ U(1) and SU(2) gauge theories ++

   ■ Cooling behaviors show that the Lagrangian densities converge:
      Niteration ~ 3 x 105 for U(1) and Niteration ~ 106 for SU(2) 
                                                       [coupling g=3.5 for SU(2)]
   ■ It is interesting that < L >SU(2) ~ 0.49 ξ-4 is smaller than 
      3 x < L >U(1) ~ 3 x 0.20 ξ-4 due to the self-interactions in SU(2).

~
~
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Appendix
++ Gauge symmetry in our approach ++

   ■ We do not include gauge fixing terms nor ghosts in Lagrangian.
   --> Our approach takes into account contributions from all of the 
         gauge copies and especially all of the Gribov regions in SU(2)
         within the fluctuation cut-off ΛA.                 Gribov, Nucl. Phys. B139 (1978) 1. 

   ■ Regions out of the fluctuation cut-off ΛA 
      might contribute to the path integrals, but
      cut-off dependence of U(1) and SU(2) 
      results (Lagrangian density, potential, A-
      distribution) are negligible. 
   --> Conjecture: gauge-field fluctuation in our 
         approach is within certain “band” 
         [average of Aμ is almost zero in simulations].
     --- Fluctuation out of the “band” will be 
          suppressed by the weight exp(-S). 


