The status of the COMPASS experiment

Norihiro DOSHITA
Yamagata University
The COMPASS facility

Beam:
- Polarized lepton beam: μ^+, μ^- 50-280 GeV/c (80% polarization @ 160GeV)
- Hadron beam: π^+, π^-, K^+, K^-, P

Target:
- Polarized proton and deuteron target
- Liquid hydrogen target
- Thin nucleus target

Many combinations of the beam & the target
COMPASS programs

<table>
<thead>
<tr>
<th>Year</th>
<th>Data taking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Longitudinally, transversally polarized proton target (160 GeV/c muon)</td>
</tr>
<tr>
<td>2008</td>
<td>Hadron beam with LH2 target</td>
</tr>
<tr>
<td>2009</td>
<td>Hadron beam with LH2 target + DVCS test run with muon beam</td>
</tr>
<tr>
<td>2010</td>
<td>Transversally polarized proton target</td>
</tr>
<tr>
<td>2011</td>
<td>Longitudinally polarized proton target (200 GeV/c muon)</td>
</tr>
<tr>
<td>2012</td>
<td>Hadron run, DVCS run (LH2 with μ+ and μ-) :: COMPASS II started</td>
</tr>
<tr>
<td>2013</td>
<td>No beam</td>
</tr>
<tr>
<td>2014</td>
<td>Drell-Yan run (hadron beam + transversally polarized proton target)</td>
</tr>
<tr>
<td>2015</td>
<td>Drell-Yan run or DVCS</td>
</tr>
<tr>
<td>2016</td>
<td>?</td>
</tr>
</tbody>
</table>

- DVCS run in 2012
- Polarized Drell-Yan preparation
- Recent results from COMPASS

March 18 2013
N. Doshita
DVCS run in 2012
Kinematic range and feature for GPDs

• Explore uncovered kinematic region between ZEUS/H1 and HERMES+Jlab

• μ^+ and μ^- beam
• Momentum 100 – 190 GeV
• 80% polarization (at 160 GeV)
• Opposite polarization between μ^+ and μ^-
Deeply Virtual Compton Scattering

GPDs can be accessed from the hard exclusive DVCS processes.

\[\sigma_{up \rightarrow up\gamma} = \sigma^{BH} + \sigma^{DVCS}_{unpol} + P_\mu \sigma^{DVCS}_{pol} + e_\mu a^{BH} \text{Re}(I) + e_\mu P_\mu \text{Im}(I) \]

\(d\sigma^{BH} : \) well known

\(I : \) interference term
Bethe-Heitler and DVCS cross sections at 160 GeV

\[d\sigma \propto |T^{DVCS}|^2 + |T^{BH}|^2 + \text{InterferenceTerm} \]

0.005 < \(X_{BJ} \) < 0.01

BH dominates
Reference yield

0.01 < \(X_{BJ} \) < 0.03

Interference
\(\text{Re}T^{DVCS} \) & \(\text{Im}T^{DVCS} \)

\(X_{BJ} > 0.03 \)

DVCS dominates
Transverse Image

MC: COMPASS setup with Ecal1+2

March 18 2013

N. Doshita
Access to GPD H and Transverse image

Beam Charge and Spin Sum

$$S_{CS,U} = d\sigma^{+\rightarrow} + d\sigma^{-\rightarrow} = 2\left(d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + e_\mu P_\mu \text{Im}(I)\right)$$

Beam Charge and Spin Difference

The BH process is independent of beam charge and polarization.

$$D_{CS,U} = d\sigma^{+\rightarrow} - d\sigma^{-\rightarrow} = 2\left(P_\mu d\sigma^{DVCS}_{pol} + e_\mu \text{Re}(I)\right)$$

Phase II (with polarized target)

One can access GPD E with a measurement of DVCS using transversely polarized proton target

$$c_0^l + c_1^l \cos \phi + c_2^l \cos 2\phi + c_3^l \cos 3\phi$$

$$s_1^l \sin \phi + s_2^l \sin 2\phi$$

$$s_1^l \propto \text{Im}(F_I, H)$$

$$c_1^l \propto \text{Re}(F_I, H)$$

March 10, 2013 N. Doshita
Transverse imaging

The exclusive cross section is parametrized as:

\[d\sigma_{DVCS}/dt \propto \exp(-B(x_B)|t|) \]

The t-slope parameter \(B(x_B) \) can be extracted without any models:

\[\langle r^2_{\perp}(x_B) \rangle \approx 2 \cdot B(x_B) \]

The transverse size of the nucleon

In 2016, 2017
- 2 years of data (280 days)
- 160 GeV polarized muon beam
- \(\mu^+ \) 70 days
- \(\mu^- \) 210 days
- 2.5m LH2 target

COMPASS in 2012
- \(\alpha' = 0.26 \)

COMPASS in 2016+17?
- \(\alpha' = 0.125 \)

ZEUS
- \(\alpha' = 0.26 \)

H1-HERA

\(B(x_B) = B_0 + 2\alpha' \log(x_0/x_B) \)
LH2 and RPD
Recoil proton detector CAMERA

To face the high rates using the high muon beam intensity

Calibration with the pion beam with elastic events (π p → π π)

ToF between 2 rings of scintillators $\sigma(\text{ToF}) < 300\text{ps}$
Ecal0 and larger kinematic range

- 56 modules
- calibrated on October 24
- cover DVCS dominates region
Liquid hydrogen target

Target inside the carbon vacuum chamber

Cooling head and buffer

Side view of Target and CAMERA

BEAM

March 18 2013

N. Doshita
Differences between in 2008 and in 2012

<table>
<thead>
<tr>
<th></th>
<th>2008 and 2009</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target length</td>
<td>40 cm</td>
<td>255 cm</td>
</tr>
<tr>
<td>Target cell diameter</td>
<td>3.5 cm</td>
<td>4.0 cm</td>
</tr>
<tr>
<td>Vacuum chamber diameter</td>
<td>20 cm</td>
<td>8 cm</td>
</tr>
<tr>
<td>Vacuum chamber material</td>
<td>Aluminum (1.8 mm thickness)</td>
<td>Carbon fiber (1 mm thickness)</td>
</tr>
<tr>
<td>Target cell material</td>
<td>Mylar</td>
<td>Capton</td>
</tr>
<tr>
<td>Cooling power</td>
<td>8 W at 20K</td>
<td>30 W at 20K</td>
</tr>
<tr>
<td>Cooling time</td>
<td>7 hours</td>
<td>15 hours</td>
</tr>
<tr>
<td>H2 Leak rate (cold phase)</td>
<td>0.017 mol/day</td>
<td>0.074 mol/day</td>
</tr>
<tr>
<td>H2 Leak rate (cold phase)</td>
<td>0.040 mmol/day/cm²</td>
<td>0.025 mmol/day/cm²</td>
</tr>
<tr>
<td>Isolation vacuum (warm)</td>
<td>8 \cdot 10^{-6} mbar</td>
<td>1.5 \cdot 10^{-5} mbar</td>
</tr>
<tr>
<td>Isolation vacuum (cold)</td>
<td>1 \cdot 10^{-6} mbar</td>
<td>7 \cdot 10^{-7} mbar</td>
</tr>
</tbody>
</table>

March 18 2013
N. Doshita
DVCS run in 2012

• Beam : Polarized μ^+ and μ^- (160 GeV/c)
• Target : Liquid hydrogen target (2.5 m long)
• Data taking : Nov. 1 – Dec. 3
• New detectors : 4m long RPD and ECAL0
• About 6 times larger amount of data of μ^+ than in 2009
• Good data of μ^- (no data taken in 2009)
Analysis of 2012 data

• Data production ongoing
 - problems of new detectors
 - Beam/spectro alignment

• Luminosity analysis
 - same method with 2009
 - use test production in 2012 data now

• ρ^0 Analysis starts
Polarized Drell-Yan preparation
Drell-Yan process and its angular distribution

\[
\frac{1}{\sigma} \frac{d\sigma}{d\Omega} = \frac{3}{4\pi(\lambda + 3)} \left[1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \nu \frac{\sin^2 \theta \cos 2\phi}{2} \right]
\]

- The collinearity hypothesis would imply $\lambda = 1$ and $\mu = \nu = 0$.
- NA10 (CERN) and E615 (Fermlab) modulation of $\cos 2\phi$ up to 30%.
- Intrinsic transverse momentum k_T of quarks inside hadron interaction.
- 2 Boer-Mulders PDFs interaction between target and beam quarks.

March 18 2013
N. Doshita
Single polarized Drell-Yan cross section

COMPASS case::

The LO expansion of the single polarized Drell-Yan cross section is

\[
\frac{d\sigma}{d^4q d\Omega} = \frac{\alpha^2}{F q^2} \hat{\sigma}_U \left\{ \left(1 + D_{\sin^2\theta} A_U^{\cos2\phi} \cos 2\phi \right) + \left| \vec{S}_T \right| \left[A_T^{\sin\phi_S} \sin \phi_S \right. \\
+ D_{\sin^2\theta} \left(A_T^{\sin(2\phi + \phi_S)} \sin(2\phi + \phi_S) + A_T^{\sin(2\phi - \phi_S)} \sin(2\phi - \phi_S) \right) \] \right\}
\]

- \(A_U^{\cos2\phi} : (BM)_\pi \otimes (BM)_P \)
- \(A_T^{\sin\phi_S} : (f_1)_\pi \otimes (Sivers)_P \)
- \(A_T^{\sin(2\phi + \phi_S)} : (BM)_\pi \otimes (Pretz.)_P \)
- \(A_T^{\sin(2\phi - \phi_S)} : (BM)_\pi \otimes (Trans.)_P \)

\(A \): azimuthal asymmetries :: convolution of 2 PDFs
\(D \): depolarization factor
\(S \): target spin component
\(\hat{\sigma}_U \): part of the cross-section surviving integration over \(\phi \) and \(\phi_S \)
\(F \): \(4\sqrt{(P_a \cdot P_b)^2 - M_a^2 M_b^2} \)

\[\text{March 18 2013} \]

N. Doshita
Universality of TMD PDFs

Because Sivers and Boer-Mulders PDFs are “Time-reversal odd”, they are expected to change the sign when measured from SIDIS or from DY:

\[f_{1T}^{\perp} \bigg|_{DY} = - f_{1T}^{\perp} \bigg|_{SIDIS} \]
\[h_{1}^{\perp} \bigg|_{DY} = - h_{1}^{\perp} \bigg|_{SIDIS} \]

We have the opportunity to test this sign change using the same Spectrometer and the transversely polarized target at COMPASS.
Event rates and statistical accuracy

Luminosity 1.2×10^{32} cm$^{-2}$s$^{-1}$ (Beam intensity : 6×10^7 pions/s)

- 800 DY events per day with $4 < M < 9$ GeV/c2

Assuming 2 years of data taking (280 days)

- 230k events in $4 < M < 9$ GeV/c2 region

This will translate into the statistical errors of the asymmetries.

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>Dimuon mass (GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2 < M_{\mu\mu} < 2.5$</td>
</tr>
<tr>
<td>$\delta A_U^{\cos 2\phi}$</td>
<td>0.0020</td>
</tr>
<tr>
<td>$\delta A_T^{\sin \phi_S}$</td>
<td>0.0062</td>
</tr>
<tr>
<td>$\delta A_T^{\sin(2\phi+\phi_S)}$</td>
<td>0.0123</td>
</tr>
<tr>
<td>$\delta A_T^{\sin(2\phi-\phi_S)}$</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

Possibility to study the asymmetries in the several x_F bins.

March 18 2013

N. Doshita
Comparing with theory predictions

$4 < M_{\mu\mu} < 9 \, \text{GeV} / c^2$

\[f_1^\pi \otimes \text{Sivers}^p \]
Anselmino et al,
PRD79(2009)054010

\[BM^\pi \otimes BM^p \]
B. Zhang et al,
PRD77(2008)054011

\[BM^\pi \otimes \text{pretzel}^p \]
Zhun Lu et al,
arXiv:1101.2702v2

\[BM^\pi \otimes \text{transv}^p \]
A.N. Sissakian et al,
Phys.Part.Nucl.41:64-100,2010

March 18 2013
N. Doshita
Target position and absorber

Concrete wall
Dilution refrigerator
Polarizing magnet
Hadron absorber
Cavity
Beam
Target working space

2.3 m

March 18 2013
N. Doshita
New set up of the experiment
Polarized target

• **Move target position to 2.3 m upstream**
 - piping, cabling, μ-waveguide, space in front of target

• **Magnet repair**
 - correction coils, isolation, precooling system
 - dipole magnet field rotation function
 - cooling test is foreseen in September

• **Radiation issue**
 - limited access to target area
 - magnet control system, NMR system
 - remote control system

• **3 target cells -> 2 cells**
 - 30-60-30 cm(2 x 5cm gap) -> 55-55cm(20cm gap)
 - microwave cavity modification
Acceptance of COMPASS

The acceptance for $4 \leq M_{\mu\mu} \leq 9 \text{ GeV}/c^2$: $38.38 \pm 1.05 \%$

- 22.17% with both muons in LAS
- 1.46% with both muons in SAS
- 14.75% with one muon in LAS and the other in SAS
New trackers

• Scintillation fiber detector
 - install in the space of hadron absorber
 - What size will be fit?
 - Radiation damage

• Drift chambers (DC5/DC6)
 - Large angle tracker
 - size 2.2m x 2.0m?
Recent results
• **A_1^p and g_1^p from the 2011 run**
 - Access to lower x region

• **LO flavor separation results**
 - The results agree with DSSV NLO parametrization
 - on the way to extract FF ratios : needed to understand better ΔS puzzle

• **Updated results for $\Delta G/G$ obtained in various analysis**
 - Updated high-P_T hadron pairs, $Q^2 > 1$ (GeV/c)2 analysis:
 - $\Delta G/G = 0.125 \pm 0.060 \pm 0.063$, subm. To PLB
 - Updated LO open charm analysis: $\Delta G/G = -0.08 \pm 0.21 \pm 0.11$
 - New NLO open charm analysis: $\Delta G/G = -0.20 \pm 0.21 \pm 0.08$
 - All world results agree with each other.
 - ΔG is small, but the sign of it is still not determined.

• **Exclusive ρ^0 muoproduction on transversely polarized p and d**
 - without recoil proton detector

• **Two-hadron asymmetries on transversely polarized p and d**
 - identified : 2002-2004 and 2010 data released, 2007 data will be released.
A_1^p and g_1^p (2007 vs 2011)

160 GeV/c muon beam in 2007
200 GeV/c muon beam in 2011

To access lower x region

March 18 2013
N. Doshita
World data of $g_1^{p,d}$

g_1^p

- COMPASS

g_1^d

- SMC
- E143
- E155
- HERMES
- COMPASS'07
- COMPASS'11 prel.
- CLAS W>2.5
- LSS 05

March 18 2013

N. Doshita
LO Flavor Separation

The curves are DSSV NLO parametrization PRL 101(2008)072001; PRD80(2009)034030
Good agreement between COMPASS data and DSSV parametrization

PLB 693 (2010) 227
Strange Sea Polarization

DIS data: \[\int \Delta s + \Delta \bar{s} = -0.08 \pm 0.01 \pm 0.02 \]

SIDIS data: \[\Delta s(x) \approx 0 \text{?} \]

\[R_{SF} = \frac{D_s^{K^-}}{D_u^{K^-}} = \frac{D_s^{K^+}}{D_u^{K^+}} \]

If \(R_{SF} \) is small, inclusive and semi-inclusive results for \(\Delta S \) agree with each other

COMPASS: 2011 data at 200 GeV

- More data on quark fragmentation functions
- More data at low \(x \)
- Extraction of \(R_{SF} \) from COMPASS data only

March 18 2013

N. Doshita
Summary of $\Delta G/G$ from COMPASS

- COMPASS, high p_T, $Q^2 > 1$ (GeV/c)2, [02, 06] data, $\langle \mu^2 \rangle = 3$ (GeV/c)2, preliminary
- COMPASS, high p_T, $Q^2 < 1$ (GeV/c)2, [02, 04] data, $\langle \mu^2 \rangle = 3$ (GeV/c)2, preliminary
- COMPASS, Open Charm, LO, all Q^2, [02, 07] data, $\langle \mu^2 \rangle = 3$ (GeV/c)2, preliminary
- SMC, high p_T, $Q^2 > 1$ (GeV/c)2, $\langle \mu^2 \rangle = 3$ (GeV/c)2
- HERMES, high p_T, all Q^2, $\langle \mu^2 \rangle = 3$ (GeV/c)2

The all results agree with each other.
GPD : Deeply virtual exclusive ρ without recoil detection

Cross section measurements:
- Pseudo – scalar : $\pi, \eta \rightarrow \tilde{H}, \tilde{E}$
- Vector meson : $\rho, \omega, \phi \rightarrow H, E$

$\rho : \omega : \phi \sim 9 : 1 : 2$ at large Q^2

Vector meson production from transversely polarized target asymmetry

$$A_{UT}^{\sin(\phi-S)} \propto \sqrt{-t''} \frac{\text{Im}(E^*H)}{|H|^2}$$

- E, H : weighted sums of GPD E^{f} and H^{f}
- Give access to GPD E

No recoil detection :: high background, mainly from non-exclusive SIDIS
- Subtracted based on LEPTO, rescaled by like-sign h pairs

March 18 2013
N. Doshita
Transversity via two hadrons

Comparison COMPASS/HERMES:

- deuteron
- proton

March 18 2013
Identified two-hadron asymmetry in the 2010 run

\[\sin \phi_{\text{as}} \sin \theta_{UT,p} \]

\(x > 0.032 \)
\(x < 0.032 \)
HERMES

COMPASS 2010 proton data

\[\sin \phi_{\text{as}} \sin \theta_{UT,p} \]

\(x > 0.032 \)
\(x < 0.032 \)
HERMES

\[\sin \phi_{\text{as}} \sin \theta_{UT,p} \]

\(x > 0.032 \)
\(x < 0.032 \)
HERMES

HERMES

COMPASS \(x > 0.032 \)
COMPASS \(x < 0.032 \)

March 18 2013

N. Doshita
Summary

• The 2012 DVCS run
 - data taking: successfully done with μ^+ and μ^-
 - data production on going

• Polarized Drell-Yan preparation
 - a lot of things to prepare: target, trackers, absorber
 - already started: magnet repair, experimental hall arrangement

• Recent analysis
 - A_1, g_1, Δs, $\Delta G/G$, Transversity, exclusive ρ