Deformations of *sd-pf* shell Λ hypernuclei

Masahiro Isaka (RIKEN)

M. I., K. Fukukawa, M. Kimura, E. Hiyama, H. Sagawa and Y. Yamamoto, Phys. Rev. C, in press.

Introduction

Knowledge of ΛN effective interaction

- Study of light (*s*, *p*-shell) Λ hypernuclei
 - Accurate solution of few-body problems^[1]
 - ΛN G-matrix effective interactions ^[2]
 - Increases of experimental information ^[3]

Development of theoretical models

• Through the study of unstable nuclei Ex.) Antisymmetrized Molecular Dynamics (AMD)^[4]

Experiments at J-PARC and JLab

• Various Λ hypernuclei will be produced

Framework: HyperAMD

(Antisymmetrized Molecular Dynamics for Hypernuclei) [5]

Hamiltonian

 $\hat{H} = \hat{T}_N + \hat{V}_{NN} + \hat{T}_{\Lambda} + \hat{V}_{\Lambda N} \quad \frac{\text{NN: Gogny D1S}}{\text{AN: YNG-ESC08c}}$

•Wave function

• Nucleon part: Slater determinant Spatial part of single particle w.f. is described as Gaussian packet $\varphi_N(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)] \qquad \varphi_i(r) \propto \exp\left|-\sum_{\sigma=x,y,z} v_\sigma (r - Z_i)_\sigma^2\right| \chi_i \eta_i \qquad \chi_i = \alpha_i \chi_\uparrow + \beta_i \chi_\downarrow$

• Single particle w.f. of Λ hyperon Superposition of Gaussian packets $(r) = \sum c \sigma (r) \qquad \sigma (r) \propto \exp \left[-\sum \mu v (r - \tau)^2 \right],$

• Procedure

- *sd* and *pf*-shell Λ hypernuclei
- neutron-rich Λ hypernuclei

Recent developments enable us to study structure of Λ hypernuclei

$$\varphi_{\Lambda}(r) = \sum_{m} c_{m} \varphi_{m}(r) \qquad \varphi_{m}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma}(r-z_{m})_{\sigma}^{2}\right] \chi_{m} \qquad \chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow}$$

• **Total w.f.:** $\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det\left[\varphi_{i}(\vec{r}_{j})\right]$

- AMD can describe dynamical changes of various structure
- No assumption on clustering and deformation

Deformations of *sd-pf* shell normal nuclei

Coexistence of deformations

Ex.) ⁴⁵Sc, ⁴⁷Sc [6,7]

- Low-lying pos.-parity states exist due to deformation
- 7/2⁻(g. s.): (almost) spherical
- Low-lying 3/2⁺: deformed

Existence of superdeformed (SD) states

Ex.) ⁴⁰Ca [8,9,10]

- SD states: 1:2 axis ratio of deformation
- In ⁴⁰Ca, SD states coexist with normal deformed (ND) states

We hope that these states are observed by JLab experiments

References

[1] E. Hiyama, NPA **805** (2008), 190c. [2] PTP suppl. **185** (2010) [3] O. Hashimoto and H. Tamura, PPNP **57** (2006), 564. [4] Y. Kanada-En'yo et al., PTP 93 (1995), 115. [5] M.I. *et al.*, PRC**83**(2011)044323. [6] I. P. Johnstone, NPA**110**(1968)429 [7] J. Styczen, et al., NPA**262**(1976) 317 [8] W. Gerace and A. Green, NPA**93**, 110(1967); NPA**123**, 241 (1969) [9] J. R. MacDonald, et al., PRC**3**, 219(1971) [10] E. Ideguchi, *et al.*, PRL**87**, 222501(2011)

Summary and Future plans

• To reveal how is difference of B_{Λ} in deformed states, we applied HyperAMD to ${}^{41}_{\Lambda}$ Ca, ${}^{46}_{\Lambda}$ Sc and ${}^{48}_{\Lambda}$ Sc. • We predict existence of SD states in ${}^{41}_{\Lambda}$ Ca and ${}^{46}_{\Lambda}$ Sc, and various ND states in ${}^{41}_{\Lambda}$ Ca, ${}^{46}_{\Lambda}$ Sc and ${}^{48}_{\Lambda}$ Sc • B_{Λ} is different among the ground, deformed and SD states

Future plans

•To predict the production cross sections • Comparison of B_{Λ} with cluster states: ${}^{13}{}_{\Lambda}C$ (Hoyle + Λ)