

Shuntaro Sakai (Kyoto Univ.), Daisuke Jido (Tokyo Metro. Univ.)

Abstract:

Recently, we have been attracted by many studies focusing on the in-medium properties of the η' meson as a probe of the partial restoration of chiral symmetry. The interaction between η' and nucleon, which is the fundamental quantity of the η' properties in the nuclear medium, is not known well. In this study, we estimate the η' N interaction and transition amplitude of η' N to η N with linear sigma model as a chiral effective theory. We also evaluate the the η' -optical potential in the nuclear matter and find that its real part is deep while the imaginary part is small.

The purposes

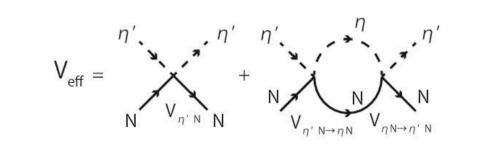
To investigate...

 $rightarrow the \eta' N \rightarrow \eta N$ transition amplitude

 $rightarrow the possibility to form a bound state of <math>\eta' N$ bound state $rightarrow the \eta'$ optical potential in nuclear matter

Introduction

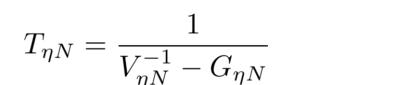
Possible modification of hadron properties in medium


$\square \eta' N$ bound state with ηN channel

Scattering equation : $T_{\alpha\beta} = V_{\alpha\beta} + V_{\alpha\gamma}G_{\gamma}T_{\gamma\beta}$ ($\alpha,\beta,\gamma:\eta N$ and $\eta' N$ channel)

(The method of the inclusion of channel coupling is discussed in Ref.[8])

 $V_{\text{eff}} = V_{\eta'N} + V_{\eta'N\to\eta N}G_{\eta N}V_{\eta N\to\eta'N}$ $+ V_{\eta'N\to\eta N}G_{\eta N}T_{\eta N}G_{\eta N}V_{\eta N\to\eta'N}$



one of the interesting topics of hadron physics [1] Ex.)dilepton process of vector meson, deeply bound state of pionic atom,...

ONuclear matter modifies the chiral properties

Quark condensate @low density[2] ρ:nuclear density[fm⁻³] $\left\langle \bar{q}q \right\rangle^* = \left(1 - \frac{\sigma_{\pi N}}{m_{\pi}^2 f_{\pi}^2} \rho\right) \left\langle \bar{q}q \right\rangle + \mathcal{O}(\rho^{n>1}) \qquad \stackrel{\text{p.indefail density [in] } f}{\underset{\langle \bar{q}q \rangle^* : \text{quark condensate in vacuum}}{\sigma_{\pi N} = 2m_q \left\langle N | \bar{q}q | N \right\rangle}}$

 \mathbf{X} The change of the $\langle q^{bar}q \rangle$ can affect the hadron properties Ex.)Gell-Mann-Oakes-Renner relation: $f_{\pi}^2 m_{\pi}^2 = -m_q \langle \bar{q}q \rangle$ Medium effect on η' properties through chiral symmetry : degeneracy of η and η' with chiral restoration with 3 favor [3] **Brief Explanation:** η and η' are related with twice axial trans. of SU(3)_L × SU(3)_R. Generator of axial trans. $\underbrace{[Q_5^a, [Q_5^b, \eta']]}_{\text{Singlet ps meson}} = d^{abc} \eta^c$ Octet ps meson (η and η' are contained in the same chiral multiplet of SU(3)_L × SU(3)_R) <u>XNo matter how $U_A(1)$ is explicitly broken by the quantum effect</u> chiral restoration in the nuclear matter • small change of η mass in nuclear matter The possible mass reduction of η' in nuclear matter $\Delta m_{\eta'} = m_{\eta'}(\rho) - m_{\eta'}(\rho = 0) = \frac{2}{3} \frac{m_{\eta'}^2 - m_{\eta}^2}{2m_{\eta'}} \frac{\sigma_{\pi N}}{m_{\pi}^2 f_{\pi}^2} \rho$ [4]

(containing the ηN intermediate state)

From the sub-threshold pole of the obtained T matrix T_{eff},

Binding energy of η'N	η'N scattering length	η'N effective range
[MeV]	[fm]	[fm]
10.4-5.2i	-2.0+0.5i	-0.24+0.005i

(The η 'N scattering length is repulsive sign due to the η 'N bound state)

 \times With the analysis of the pp \rightarrow pp η' data, $|\text{Re } a_{\eta'N}| < 0.8 \text{fm}$ $|a_{\eta'N}| \sim 0.1 \text{fm}$ [9]

$\square \eta'$ optical potential in nuclear medium

Klein-Gordon eq. in nuclear matter

[MeV]

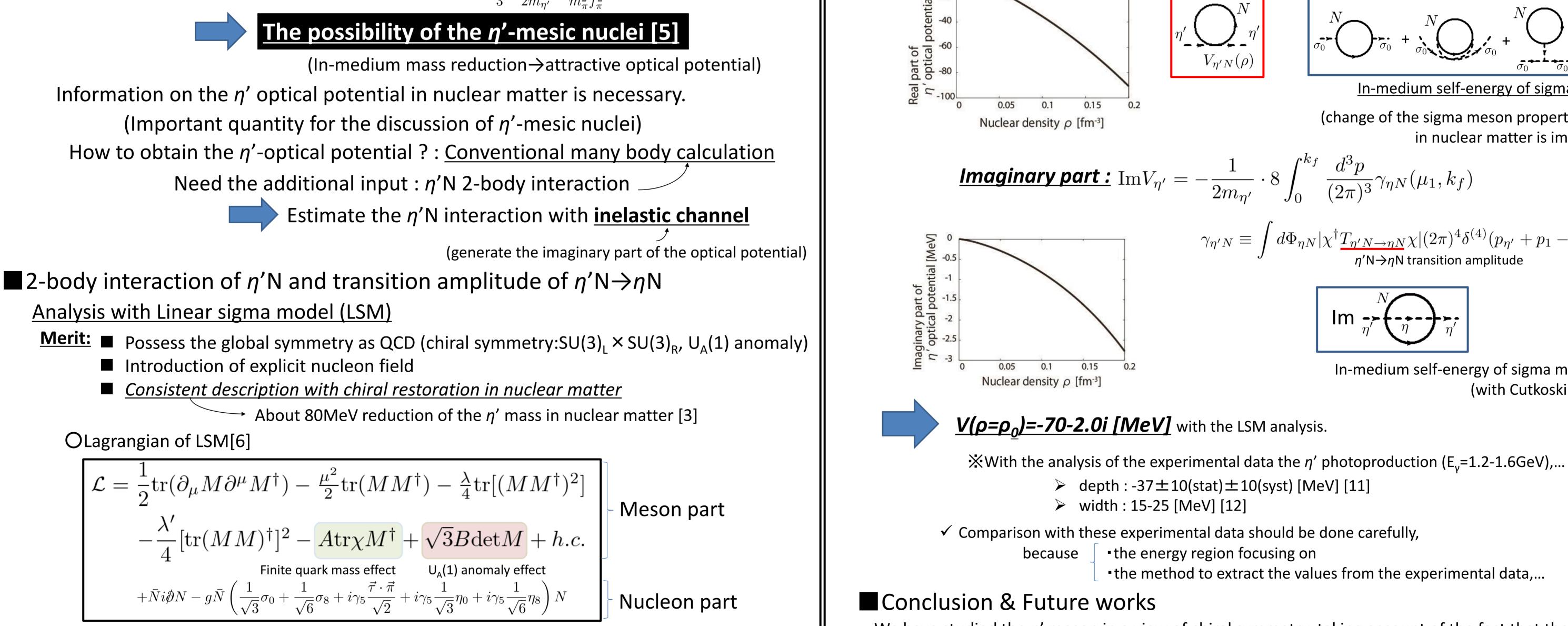
$$\left(-\nabla^2 + m_{\eta'}^2 + \Sigma(\rho)\right)\Psi = E^2\Psi$$

meson optical potential in nuclear matter=In-medium meson self energy

In-medium self-energy of sigma meson

in nuclear matter is important[])

(with Cutkoski rule[10])


(change of the sigma meson properties

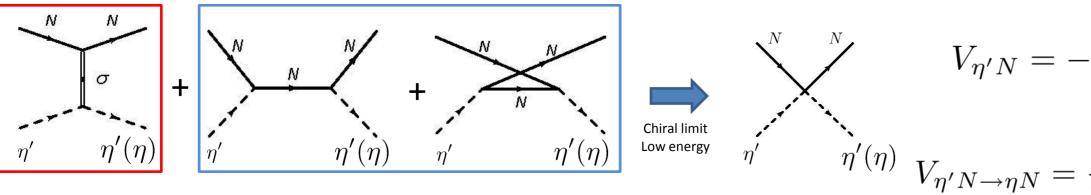
In-medium self-energy of sigma meson

 $\gamma_{\eta'N} \equiv \int d\Phi_{\eta N} |\chi^{\dagger} \underline{T_{\eta'N \to \eta N}} \chi| (2\pi)^{4} \delta^{(4)} (p_{\eta'} + p_{1} - p_{\eta} - p_{Y}) \frac{1}{\eta' N \to \eta N} \text{ transition amplitude}$

Investigate the in-medium self energy of the η' meson (Including the effect of the σ mass reduction)

 $V_{\eta'N}(\rho)$

We have studied the η' meson in a view of chiral symmetry, taking account of the fact that the η'



× Parameters of the Lagrangian are determined to reproduce...

- the meson masses and decay constants
- the 35% restroration of quark condensate at normal nuclear density[7]

η' N interaction with Linear sigma model

Tree level diagrams of $\eta' N \rightarrow \eta'(\eta) N$

sigma meson exchange are essential to these processes $U_{A}(1)$ anomaly

- B:coefficient of determinant interaction (breaking $U_{A}(1)$ symmetry explicitly)
- Born terms are cancelled out and sigma exchange term only remains.

X The ηN interaction is zero in the chiral limit.

meson should degenerate with the η meson when any SU(3) chiral symmetry is restored. Using the linear sigma model, we have calculated the $\eta'N$ interaction and the $\eta'N$ transition amplitude. With these amplitudes, we have evaluated the $\eta' N$ scattering amplitude in coupled channels of $\eta' N$ and ηN . We have found that the interaction between $\eta' N$ is enough strong to form a bound state with the 10.4 MeV binding energy and the 10.4 width. We have also estimated the strength of the η' optical potential in nuclear medium, which has a large real part while a small imaginary part. With this strongly attractive optical potential, one may have η' bound state in nuclei. Further investigation is going on.

References

[1] T. Hatsuda, R. Hayano, Rev. Mod. Phys. 82, 2942 (2010); R. Rapp, J. Wambach, H. van Hees, arXiv:0901.3289.

[2] E.G. Durkarev, E.M. Levin, Nucl. Phys. A511, 679 (1990).

- [3] T.D. Cohen, Phys. Rev. D54, 1867(1996); S.H. Lee, T. Hatsuda, Phys. Rev. D54, 1871 (1996);
- D. Jido, H. Nagahiro, S. Hirenzaki, Phys. Rev. C85, 032201 (2012).

[4] S. Sakai, D. Jido, Phys. Rev. C88, 064906 (2013).

[5] K. Saito, et al. Prog. Part. Nucl. Phys. 58, 1 (2007); H.Nagahiro, S.Hirenzaki, Phys. Rev. Lett. 94, 232503 (2005). [6] J. Schechter, Y. Ueda, Phys. Rev. D3, 168 (1971); J.T. Renaghan, et al., Phys. Rev. D62, 085008 (2000). [7] K. Suzuki, et al., Phys. Rev. Lett. 92, 72302 (2004); Friedman, et al., Phys. Rev. Lett. 93, 122302 (2004). [8] T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008). [9] P. Moskal, et al., Phys. Lett. B474, 416 (2000); P. Moskal, et al., Phys. Lett. B482, 356 (2000). [10] T. Sekihara, et al., Phys. Rev. C86, 065205 (2012).

- [11] M. Nanova, et al., Phys. Lett. B710, 600 (2012).
- [12] M. Nanova, et al., Phys. Lett. B727, 417 (2013).