Exotic dibaryons with a heavy antiquark

Yasuhiro Yamaguchi 1 , Shigehiro Yasui 2 , and Atsushi Hosaka 1

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047, Japan ²Tokyo Institute of Technology, Ookayama, Meguro, Tokyo, 152-8551, Japan

KEK theory center workshop on J-PARC hadron physics in 2014, Ibaraki Quantum Beam Research Center, Ibaraki, 2/10 - 12, 2014

1. Introduction

3. Numerical Results

- The anticharmed (bottom) dibaryons, $\overline{D}NN$ (BNN), are genuinely exotic states. Their bound states are stable against a strong decay.
- They provide us with information about the meson-nucleons interactions, impurity effects caused by the heavy meson, etc.
- The interaction between a heavy meson and a nucleon is attractive
- Bound states and resonances are studied.
- By diagonalizing the Hamiltonian $H = T + V_{P^{(*)}N} + V_{NN}$, the eigenenergies are obtained.
- Wave function is expressed by the Gaussian expansion method².
- For resonances, the complex scaling method³ is employed.

due to the one pion exchange potential (OPEP) which appears through the $\overline{D}N - \overline{D}^*N$ mixing. Therefore, we expect existence of $\overline{D}NN(BNN)$ bound states.

Figure 1: Exotic dibaryons, $\overline{D}NN$ and BNN.

2. Heavy Quark Symmetry and OPEP

- Heavy quark spin symmetry¹ manifests **the degeneracy** of heavy pseudoscalar meson $P = \overline{D}, B$ and vector meson $P^* = \overline{D}^*, B^*$. ¹ N. Isgur and M. B. Wise, PLB**232**(1989)113, PRL**66**(1991)1130 ² E. Hiyama, *et al.*, Prog. Part. Nucl. Phys. **51**(2003)223 ³ S. Aoyama, *et al.*, PTP**116**(2006)1

• As a result, **Bound states** with $J^P = 0^-$ and **Resonances** with $J^P = 1^-$ are found for $\overline{D}NN$ and BNN.

Figure 3: Energy levels for $\overline{D}NN$ and BNN with total isospin I = 1/2.

YY, S. Yasui, and A. Hosaka, arXiv:1309.4324 [nucl-th]

4. Energy expectation values

- This is caused by suppression of a spin-dependent force in the heavy quark limit $(m_Q \to \infty)$.

Indeed, the mass splitting between P and P^{\ast} is small,

 $m_{B^*} - m_B \sim 45 \text{ MeV}, \quad m_{D^*} - m_D \sim 140 \text{ MeV}$ - The OPEP appears through the $PP^*\pi$ and P $P^*P^*\pi$ vertices. ($PP\pi$ is forbidden due to the parity conservation.)

- Tensor force of the OPEP mixing the PN and P^*N channels generates a strong attraction.

- The mass degeneracy makes the $PN - P^*N$ mixing more effective. \rightarrow The OPEP plays an important role between a heavy meson and a nucleon.

Figure 2: The π exhange potential mixing $PN - P^*N$.

• π exchange potential of $V_{P^{(*)}N}$; (S. Yasui and K. Sudoh, PRD**80**(2009)034008) $V_{PN-P^*N}(r) = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}3} [\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} \underbrace{C(r; m_{\pi})}_{\text{Central force}} + S_{\varepsilon} \underbrace{T(r; m_{\pi})}_{\text{Tensor force}}] \vec{\tau}_P \cdot \vec{\tau}_N,$ For the bound states, the energy expectation values of the potentials are estimated.

$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N}\rangle$	$\langle V_{NN} \rangle$
Central	-2.3	-0.1	-9.5
Tensor	-47.1	0.7	-0.2
LS			-0.03
YY, S. Yasui, and A. Hosaka, arXiv:1309.4324 [nucl-th]			

- The tensor force of the $V_{\bar{D}N-\bar{D}^*N}$ generates the strong attraction. \Rightarrow This force is the driving force to form the bound state.
- For $V_N N$, the central force is stronger than the tensor force. $\Rightarrow NN(0^+)$ subsystem dominates in the bound states, while $NN(1^+)$ (=Deuteron) subsystem is minor.
- $\hfill \ \hfill \ \$

6. Summary

 $V_{P^*N-P^*N}(r) = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}3} [\vec{T} \cdot \vec{\sigma}C(r; m_{\pi}) + S_T T(r; m_{\pi})] \vec{\tau}_P \cdot \vec{\tau}_N,$ ($g_{\pi} = 0.59, \ g_{\pi NN}^2 / 4\pi = 13.6, \ f_{\pi} = 132 \text{ MeV}$)

• NN interaction: AV8' potential (B. S. Pudliner, et al., PRC56(1997)1720)

$$\begin{split} V_{NN}(r) &= \sum_{p=1}^{8} v_p'(r) \mathcal{O}^p \\ \mathcal{O}^{p=1,\cdots,8} &= 1, \ (\vec{\sigma}_1 \cdot \vec{\sigma}_2), \ (\vec{\tau}_1 \cdot \vec{\tau}_2), \ (\vec{\sigma}_1 \cdot \vec{\sigma}_2)(\vec{\tau}_1 \cdot \vec{\tau}_2), S_{12}, \ S_{12}(\vec{\tau}_1 \cdot \vec{\tau}_2), \\ \vec{L} \cdot \vec{S}, \ \vec{L} \cdot \vec{S}(\vec{\tau}_1 \cdot \vec{\tau}_2) \end{split}$$

- Exotic dibaryons formed by $ar{D}NN$ and BNN are investigated.
- Considering the Heavy Quark Symmetry, we introduce π exchange potential between a heavy meson and a nucleon.

As for a realistic NN potential, the AV8' potential is employed.

- We found a bound state with $J^P=0^-$ and a resonance with $J^P=1^-$ both in $\bar{D}NN$ and BNN.
- The tensor force of OPEP between the heavy meson and the nucleon plays a crucial role to produce the strong attraction.

Contact Information

Email: yamaguti@rcnp.osaka-u.ac.jp
Phone: +81 6 6879 8945

