Meson production reactions for investigating hadron structure: New opportunities at J-PARC

> Hiroyuki Kamano (RCNP, Osaka U.) for T.-S. Harry Lee (Argonne Natl. Lab.)

Collaborators: S.X. Nakamura, T. Sato, J.-J. Wu

> Workshop on J-PARC Hadron Physics Feb 10-12, 2014

Light-flavor baryon spectroscopy : Physics of broad & overlapping resonances

✓ Width: a few hundred MeV.

- ✓ Resonances are highly overlapping in energy except ∆(1232).
- ✓ Width: ~10 keV to ~10 MeV
- Each resonance peak is clearly separated.

N* states and PDG *s

	Status									
Particle J^P	overa	$1 \pi N$	γN	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^-$	****	****	****	***					***	***
$N(1535)1/2^-$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5/2^-$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^-$	***	***	**	?			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	2*			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$\Delta(1232) \ 3/2^+$	****	****	****	F						
$\Delta(1600) \ 3/2^+$	***	***	***	7 0)				*	***
$\Delta(1620) \ 1/2^{-}$	****	****	***		r				***	***
$\Delta(1700) \ 3/2^{-}$	****	****	****		b				**	***
$\Delta(1750) 1/2^+$	*	*		2		i				
$\Delta(1900) \ 1/2^{-}$	**	**	**	•		d		**	**	**
$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**
$\Delta(1910) 1/2^+$	****	****	**				e	*	*	**
$\Delta(1920) \ 3/2^+$	***	***	**				n	***		**
$\Delta(1930) \; 5/2^-$	***	***		?						
$\Delta(1940) \ 3/2^{-}$	**	*	**	F				(see	en in	$\Delta \eta$
$\Delta(1950) \ 7/2^+$	****	****	****	0)			***	*	***
$\Delta(2000) 5/2^+$	**			?	r					**

N* states and PDG *s

		Statu	3			-/					
Particle J^P	overa	ll πN	γN	$N\eta$	$N\sigma$	N		A	ll o	of the	se studies o
$N = 1/2^+$	****						(mo	st) r	prope	rties of the
$N(1440) 1/2^+$	****	****	****		***			toto	h		ior over a
$N(1520) 3/2^{-}$	****	****	****	***			8	lale	з, п	lowev	vel, even a
$N(1535) 1/2^{-}$	****	****	****	****	k						
$N(1650) 1/2^{-}$	****	****	***	***							Arndt, Brisc
$N(1675) 5/2^-$	****	****	***	*							
$N(1680) 5/2^+$	****	****	****	*	**		_		***		
N(1685) ??	*										
$N(1700) 3/2^-$	***	***	**	?			*	*	*	***	
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**	
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*	
$N(1860) 5/2^+$	**	**							*	*	1000
$N(1875) 3/2^{-}$	***	*	***			**	***	**		***	
$N(1880) 1/2^+$	**	*	*		**		*				
$N(1895) 1/2^{-}$	**	*	**	2*			**	*			
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**	
$N(1990) 7/2^+$	**	**	**					*			
$N(2000) 5/2^+$	**	*	**	**			**	*	**		1.
$\Delta(1232) \ 3/2^+$	****	****	****	F							
$\Delta(1600) \ 3/2^+$	***	***	***	?	0				*	***	
$\Delta(1620) 1/2^{-1}$	****	****	***	-	r				***	***	
$\Delta(1700) \ 3/2^{-1}$	****	****	****		b				**	***	1.0
$\Delta(1750) 1/2^+$	*	*		2		i					
$\Delta(1900) 1/2^{-1}$	**	**	**	Ē		d		**	**	**	10.0
$\Delta(1905) 5/2^+$	****	****	****			d		***	**	**	
$\Delta(1910) 1/2^+$	****	****	**				e	*	*	**	
$\Delta(1920) \ 3/2^+$	***	***	**				n	***		**	1.00
$\Delta(1930) 5/2^{-1}$	***	***		2							
$\Delta(1940) \ 3/2^{-1}$	**	*	**	F				(se	en ir	$\Delta \eta$	and the second
$\Delta(1950) 7/2^+$	****	****	****		0			***	*	***	
$\Delta(2000) 5/2^+$	**			?	r					**	

All of these studies essentially agree on the existence and most) properties of the 4-star states. For the 3-star and lower tates, however, even a statement of existence is problematic.

Arndt, Briscoe, Strakovsky, Workman PRC 74 045205 (2006)

N* states and PDG *s

Hadron spectrum and reaction dynamics

- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
- In reality, excited hadrons are "unstable" and can exist only as resonance states in hadron reactions.

Constituent quark model

Hadron spectrum and reaction dynamics

- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
 - Excited hadrons are treated as stable particles. > The resulting masses are real.
- In reality, excited hadrons are "unstable" and can exist only as resonance states in hadron reactions.

1*

"molecule-like" states

"Mass" becomes complex !! → "pole mass"

core (bare state) + meson cloud

Hadron spectrum and reaction dynamics

- Various static hadron models have been proposed to calculate hadron spectrum and form factors.
 - Quark models, Bag models, Dyson-Schwinger approaches, Holographic QCD,...
 - Excited hadrons are treated as stable particles. > The resulting masses are real.
- In reality, excited hadrons are "unstable" and can exist only as resonance states in hadron reactions.

What is the role of reaction dynamics in interpreting the hadron spectrum, structures, and dynamical origins ??

Approaches to N* spectroscopy

For details see Matsuyama, Sato, Lee, Phys. Rep. 439 (2007)193 HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \omega N \cdots)$$
$$\pi \pi N$$

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439 (2007)193 HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

λ

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$
coupled-channels effect

Meson-Baryon Green functions G_{MB}

$$MB = \pi N, \eta N, K \Lambda, K \Sigma, \omega N$$

$$MB = \pi \Delta, \rho N, \sigma N$$
Stable channels
$$MB = \pi \Delta, \rho N, \sigma N$$

$$MB = \pi \Delta, \rho N$$

For details see Matsuyama, Sato, Lee, Phys. Rep. 439 (2007)193 HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

For details see Matsuyama, Sato, Lee, Phys. Rep. 439 (2007)193 HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

✓ Partial wave (LSJ) amplitudes of $a \rightarrow b$ reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

 $a, b, c = (\gamma^{(*)}N)$

Would be related with hadron states of the static hadron models (quark models, DSE, etc.) excluding meson-baryon continuums.

Transition Potentials:

$$V_{a,b} = v_{a,b} + Z_{a,b} + \sum_{N^*} \frac{\Gamma_{N^*,a}^{\dagger} \Gamma_{N^*,b}}{E - M_{N^*}}$$

Exchange potentials Z-diagrams bare N* states

For details see Matsuyama, Sato, Lee, Phys. Rep. 439 (2007)193 HK, Nakamura, Lee, Sato, PRC88 (2013) 035209

Physical N*s will be a "mixture" of the two pictures:

Strategy for the N* spectroscopy Couplings, cutoffs, masses of bare N*s, etc. Step 1 Determine model parameters by performing χ^2 -fit of the world data of meson production reactions. Step 2 Extract resonance parameters (pole masses, form factors etc.) from the constructed model by making the analytic continuation of the amplitudes to the complex energy plane. Step 3 Examine role of multichannel reaction dynamics in understanding

the spectrum, internal structure and production mechanisms of the N* resonances.

Our analyses of meson production reactions

Fully	/ combined ana	lysis of πN ,	γ $N \rightarrow \pi N$, τ	ןN , KΛ	, <mark>KΣ</mark> reactions !!
--------------	----------------	--------------------	-----------------------------	---------	--------------------------------

	2006 – 2009	2010 – 2013
	(EBAC/JLab)	(ANL-Osaka)
✓ # of coupled	6 channels	8 channels
channels	(γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ)	(γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ, <mark>ΚΛ,ΚΣ</mark>)
✓ $\pi p \rightarrow \pi N$	< 2 GeV	< 2.3 GeV
✓ γp → πN	< 1.6 GeV	< 2.1 GeV
✓ πp → ηN	< 2 GeV	< 2.1 GeV
✓ γ p → η p		< 2.1 GeV
✓ π $p \rightarrow K$ Λ, ΚΣ	—	< 2.1 GeV
✓ γ $p \rightarrow K^+\Lambda, K\Sigma$	Julia-Diaz, Lee, Matsuyama, Sato, PRC76 (2007) 065201;	< 2.1 GeV HK, Nakamura, Lee, Sato

Database for ANL-Osaka DCC analysis

$\pi N \rightarrow \pi N$ PWA from SAID

πp → ηN, KΛ, KΣ observables

Partial wave		Partial wave				$d\sigma/d\Omega$	Р	β	Sum
$ \begin{array}{r} S_{11} \\ P_{11} \\ P_{13} \\ D_{13} \\ D_{15} \\ F_{15} \\ F_{15}$	65×2 65×2 61×2 61×2 61×2 48×2 20	S_{31} P_{31} P_{33} D_{33} D_{35} F_{35}	65×2 61×2 65×2 59×2 40×2 43×2		$\pi^{-}p \to \eta p$ $\pi^{-}p \to K^{0}\Lambda$ $\pi^{-}p \to K^{0}\Sigma^{0}$ $\pi^{+}p \to K^{+}\Sigma^{+}$ Sum	294 544 160 552	262 70 312 644	- 43 - 7 50	294 849 230 871 2244
F_{17} G_{17} G_{19} H_{19} Sum	32×2 42×2 28×2 34×2 994	$F_{37} \\ G_{37} \\ G_{39} \\ H_{39}$	44×2 32×2 32×2 31×2 944	1938	<u></u>		HK, Nak PRC	amura, Le 88 (2013)	e, Sato 035209

22,348 data of unpolarized & polarized observables to fit !!

γp → πN, ηp, KΛ, KΣ observables

	$d\sigma/d\Omega$	Σ	Т	Р	Ê	G	Н	$O_{x'}$	$O_{z'}$	C_x	C_z	Sum
$\gamma p \rightarrow \pi^0 p$	4381	1128	380	589	140	125	49	7	7	_	_	6806
$\gamma p \rightarrow \pi^+ n$	2315	747	678	222	231	86	128	_	_	_	_	4407
$\gamma p \rightarrow \eta p$	3221	235	50	_	_	_	_	_	_	_	_	3506
$\gamma p \rightarrow K^+ \Lambda$	800	86	66	865	_	_	_	66	66	79	79	2107
$\gamma p \rightarrow K^+ \Sigma^0$	758	62	_	169	_	_	_	_	_	40	40	1069
$\gamma p \rightarrow K^0 \Sigma^+$	220	15	_	36	_	_	_	_	_	_	_	271
Sum	11 695	2273	1174	1881	371	211	177	73	73	119	119	18166

Partial wave amplitudes of πN scattering

W (MeV)

P₁₃

F₁₅

G

2100

Partial wave amplitudes of πN scattering

W (MeV)

$\gamma p \rightarrow \pi^0 p$ reaction

Differential cross section (W = 1.08-2.1 GeV)

1.6 GeV

1.9 GeV

8ch DCC-analysis [HK, Nakamura, Lee, Sato, PRC88 (2013) 035209]

previous 6ch DCC-analysis (fitted to $\gamma N \rightarrow \pi N$ data only up to W = 1.6 GeV) [Julia-Diaz et al., PRC77 (2008) 045205]

$\gamma p \rightarrow K^+ \Sigma^0$ reaction

8ch DCC-analysis [HK, Nakamura, Lee, Sato, PRC88 (2013) 035209]

Cx'

At present, NO data are available for the other 11 observables: T, E, F, G, H, Ox', Oz', Lx', Lz', Tx', Tz'

$\gamma p \rightarrow K^+ \Sigma^0$ reaction

Coupled-channels effect on observables

Coupled-channels effect on observables

Extracting N* resonance parameters

Definitions of

- ✓ N* masses (spectrum) → Pole positions of the amplitudes
- ✓ N^{*} → MB, γ N coupling constants → Residues^{1/2} at the pole

Extracting N* resonance parameters

Definitions of

- ✓ N* masses (spectrum) → Pole positions of the amplitudes
- ✓ N^{*} → MB, γ N coupling constants → Residues^{1/2} at the pole

Consistent with the resonance theory based on Gamow vectors

G. Gamow (1928), R. E. Peierls (1959), ... For a brief introduction of Gamov vectors, see, e.g., de la Madrid et al, quant-ph/0201091

→ Resonances are (complex-energy) eigenstates of the Hamiltonian of the underlying fundamental theory with the purely outgoing boundary condition !!

(complex) energy eigenvalues = pole values

transition matrix elements = $(residue)^{1/2}$ of the poles

Extending DCC analysis	2006-2009 [P	2010-2013 RC88(2013)035209	2014-]
 ✓ # of coupled channels 	6 channels (γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ)	8 channels (6ch + KΛ, KΣ)	9 channels (8ch + ωN)
✓ πp→ πN	< 2 GeV	< 2.3 GeV	< <mark>2.5</mark> GeV
✓ γp → πN	< 1.6 GeV	< 2.1 GeV	< <mark>2.3</mark> GeV
√ πр → ηр	< 2 GeV	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ үр → ηр	_	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ πp → KΛ, KΣ	_	< 2.1 GeV	< <mark>2.3</mark> GeV
✓ γp → KΛ, KΣ	_	< 2.1 GeV	< <mark>2.3</mark> GeV
√ π ⁻ p → ωn	_	_	< 2.3 GeV
√ γp → ωp	_	_	< <mark>2.3</mark> GeV

After the 9-channel analysis, next task is to include $\pi\pi N$ data !!

- > $\pi\pi N$ has the largest cross section in πN and γN reactions above W = 1.6 GeV.
- > Most N*s decay dominantly to $\pi\pi N$.

After the 9-channel analysis, next task is to include $\pi\pi N$ data !!

- > $\pi\pi N$ has the largest cross section in πN and γN reactions above W = 1.6 GeV.
- > Most N*s decay dominantly to $\pi\pi N$.

Measurements of $\pi N \rightarrow \pi \pi N$ has been approved at J-PARC !!! [K. Hicks and H. Sako et al., J-PARC E45]

New opportunity at J-PARC

Need more extensive and accurate data of

 $πN \rightarrow ππN$ $πN \rightarrow KΛ$ (~ 1,000 data points) $πN \rightarrow KΣ$ (~ 2,200) $πN \rightarrow nN$ (~ 350) Approved (J-PARC E45 K. Hicks & H. Sako et al.)

- πN → ηN (~ 350) πN → ωN (~ 200)
 - > Much less than $\pi N \rightarrow \pi N$ (~ 30,000)
 - Lack of sufficient data leaves sizable uncertainty in pinning down N* mass spectrum and N* → ηN, ωN, KY, ππN decay dynamics

J-PARC is a unique facility to resolve this issue !!

New opportunity at J-PARC: Y* spectroscopy with Kaon beams

Y* spectroscopy with *Kaon*-induced reactions

- The simplest reactions for studying Y*.
- Deuteron reactions allow direct access to Λ(1405) region and study of YN and YY interactions.

New opportunity at J-PARC: Y* spectroscopy with Kaon beams

Y* spectroscopy with *Kaon*-induced reactions

New opportunity at J-PARC: Y* spectroscopy with Kaon beams

Y* spectroscopy with *Kaon*-induced reactions

Extensive and accurate data are highly desirable for inelastic reactions: $K^- p \rightarrow \eta \Lambda$, $\omega \Lambda$, $K\Xi$, $\overline{K}\pi N...!!$

Conclusion

- 1. To establish N* spectrum, extensive and accurate data of $\pi N \rightarrow \eta N$, ωN , KY... are necessary.
- 2. To establish Y* spectrum, extensive and accurate data of KN and Kd reactions are necessary.

We rely on J-PARC for measuring these crucial reactions !!