Neutrino Interactions with Nucleons and Nuclei

Olga Lalakulich, Kai Gallmeister and Ulrich Mosel

Institut für Theoretische Physik

The Impossible Experiment

- Beam composition not fully known
- Beam energy badly known
- Beam diameter ~ 0.5 m at its source
- Beamline ~ 300 1000 km
- Beam diameter ~ 600 m at the detector
- Cross sections ~ 10⁻¹¹ mb
- Only a small part of the final state known
- From all of this:

T2K extracts physics beyond the standard model!

Motivation and Contents

- Determination of neutrino oscillation parameters and axial properties of nucleons and resonances requires knowledge of neutrino energy and momentum transfer
- Neutrino beams are broad in energy
- Modern experiments use nuclear targets
- Nuclear effects affect event characterization, cross section measurements, neutrino energy reconstruction and, consequently, oscillation parameters

Neutrino Oscillations

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$

$$- \left(\alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \right)$$

$$+ \left(\alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \right)$$

$$+ \left(\alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}^{2}} \right)$$

$$\equiv O_{1} + O_{2}(\delta) + O_{3}(\delta) + O_{4} .$$

 $\hat{A} = \frac{\Delta m_{21}^2 L}{4E} \qquad (\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}) \quad \xi = \cos \theta_{13} \sin(2\theta_{12}) \sin(2\theta_{23})$ $\hat{A} = \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2} \qquad (\delta = \text{CP violating phase})$

appearance probability

Vacuum oscillation

Matter effects, n_e = electron density depends on sign of Δ_{31}

Oscillation depends on difference of (squared) masses only

JPARC 02/2014

JUSTUS-LIEBIG-UNIVERSITĂ GIESSEN

LBNE, δ_{CP} Sensitivity

Need to know neutrino energy to better than about 100 MeV

Need energy to distinguish between different δ_{CP}

JPARC 02/2014

Theoretische Physik

Oscillation Signal Dependence on Hierarchy and Mixing Angle

Fig. 2. $P_{\mu\epsilon}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict positive θ_{13} , solid curves depict positive θ_{13} .

Shape sensitive to hierarchy and sign of mixing angle Energy resolution of about 50 MeV is needed

Energy Reconstruction by QE

In QE scattering on nucleon at rest, only *l* +*p*, 0 π, is outgoing. lepton determines neutrino energy:

$$E_{\nu} = \frac{2M_{N}E_{\mu} - m_{\mu}^{2}}{2(M_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Trouble: all presently running exps use nuclear targets
 Nucleons are Fermi-moving
 Final state interactions may hinder correct event identification

JPARC 02/2014

itut für oretische Physik

JPARC 02/2014

Institut für Theoretische Physik

Final State Interactions in Nuclear Targets

Complication to identify QE, entangled with π production Both must be treated at the same time! Nuclear Targets (K2K, MiniBooNE, T2K, MINOS, Minerva,)

- UNIVERSI

Energy Reconstruction by QE

CCQE scattering on neutron at rest

Energy

$$E_{\nu}^{\text{rec}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_nE_B + m_{\mu}^2 + \Delta M^2)}{2\left[M_n - E_B - E_{\mu} + |\vec{k}_{\mu}|\cos\theta_{\mu}\right]}$$

$$Q^2$$

$$Q_{\rm rec}^2 = -m_{\mu}^2 + 2E_{\nu}^{\rm rec}(E_{\mu} - |\vec{k}_{\mu}|\cos\theta_{\mu})$$

Energy reconstruction tilts spectrum, affects Q² distribution at small Q²

Need for a Neutrino Generator

- Need final state for event reconstruction
 Inclusive cross sections are not enough, need semi-inclusive for event identification
- Need theory that can describe the complete final state of a ($vA \rightarrow lX$) interaction
- Only practical theory: MC or transport code

A wake-up call for the high-energy physics community:

"Wake up, Dr. Erskine-you're being transferred to low energy physics."

Nuclear Physics determines response of nuclei to neutrinos

GiBUU : Theory and Event Generator
 based on a BM solution of Kadanoff-Baym equations

 Physics content and details of implementation in:
 Buss et al, Phys. Rept. 512 (2012) 1- 124

 Code available from gibuu.hepforge.org

Mine of information on theoretical treatment of potentials, collision terms, spectral functions and cross sections, useful for any generator

Transport Equation

Collision term

$$\mathcal{D}F(x,p) + \operatorname{tr}\left\{\operatorname{Re}\tilde{S}^{\operatorname{ret}}(x,p), -\mathrm{i}\tilde{\Sigma}^{<}(x,p)\right\}_{\operatorname{pb}} = C(x,p).$$

Drift term

$$\left(1 - \frac{\partial H}{\partial p_0}\right) \frac{\partial}{\partial t} + \frac{\partial H}{\partial \mathbf{p}} \frac{\partial}{\partial \mathbf{x}} - \frac{\partial H}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{p}} + \frac{\partial H}{\partial t} \frac{\partial}{\partial p^0} + \text{KB term} \right] F(x, p)$$
$$= -\text{loss term} + \text{gain term}$$

F(x,p) = 8-d phase-space density

Kadanoff-Baym equation

- LHS: drift term + backflow (KB) terms
- RHS: collision term = loss + gain terms (detailed balance)

- GiBUU describes (within the same unified theory and code)
 - heavy ion reactions, particle production and flow
 - pion and proton induced reactions
 - low and high energy photon and electron induced reactions
 - neutrino induced reactions

using the same physics input! And the same code! NO TUNING!

Check: pions in HARP

HARP small angle analysis 12 GeV protons

Curves: GiBUU

K. Gallmeister et al, NP A826 (2009)

Reaction Types

- 3 major reaction types relevant:
- 1. QE scattering
 - true QE (single particle interaction)
 - many-particle interactions (RPA + 2p2h + spectral functions)
- 2. Pion production
- 3. SIS and DIS (less important at T2K and MiniBooNE)
- All reaction types are entangled: final states may look the same

Neutrino Beams

Neutrinos do not have fixed energy nor just one reaction mechanism

Have to reconstruct energy from final state of reaction Different processes are entangled ISTUS J IFRIC

JPARC 02/2014

UNIVERSITA

T2K vs MB Flux

Neutrino-nucleon cross section

Quasielastic scattering

$$egin{aligned} J_{QE}^{\mu} &= \left(\gamma^{\mu} - rac{\not q \, q^{\mu}}{q^2}
ight)F_1^V + rac{i}{2M_N}\sigma^{\mulpha}q_lpha F_2^V \ &+ \gamma^{\mu}\gamma_5 F_A + rac{q^{\mu}\gamma_5}{M_N}F_P \end{aligned}$$

Vector form factors from *e*-scattering

 g_A

- axial form factors
 - $F_A \Leftrightarrow F_P$ and $F_A(0)$ via **PCAC** dipole ansatz for F_A with

$$A_{A} = 1 \text{ GeV:} \quad F_{A}(Q^{2}) = \frac{1}{(1 - 1)^{2}}$$

Beyond Impulse Approx: 2p2h Interactions

■ Model for $v + p_1 + p_2 \rightarrow p_3 + p_4 + I$ (no recoil)

$$\frac{d^2\sigma}{dE'_l d(\cos\theta')} \propto \frac{k'}{k} \int_{NV} d^3r \int \prod_{j=1}^4 \frac{d^3p_j}{(2\pi)^3 2E_j} f_1 f_2 \overline{|M|^2} (1-f_3)(1-f_4)\delta^4(p)$$

with flux averaged matrixelement

$$\overline{|M|^2} = \int \Phi(E_{\nu}) L_{\mu\nu} W^{\mu\nu} \,\mathrm{d}E_{\nu}$$

Flux smears out details in hadron tensor *W* w contains 2p-2h and poss. RPA effects

The MiniBooNE QE Puzzle **Explanations**

M = const

 $\overline{M} = M(E,q), \ W^{\mu\nu} \sim P_T^{\mu\nu}(q)$

Phase-space model for 2p-2h Absolute value fitted to data.

Pion Production

Pion production dominated by $P_{33}(1232)$ resonance (not just a heavier nucleon)

$$\begin{split} J^{\alpha\mu}_{\Delta} &= \quad \left[\frac{C^V_3}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C^V_4}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + \frac{C^V_5}{M_N^2} (g^{\alpha\mu} q \cdot p - q^{\alpha} p^{\mu}) \right] \gamma_5 \\ &+ \frac{C^A_3}{M_N} (g^{\alpha\mu} \not\!\!\!/ - q^{\alpha} \gamma^{\mu}) + \frac{C^A_4}{M_N^2} (g^{\alpha\mu} q \cdot p' - q^{\alpha} p'^{\mu}) + C^A_5 g^{\alpha\mu} + \frac{C^A_6}{M_N^2} q^{\alpha} q^{\mu} \end{split}$$

C^V(Q²) from electron data (MAID analysis with CVC)

 $C^{A}(Q^{2})$ from fit to neutrino data (experiments on hydrogen/deuterium), so far only C^A₅ determined, for other axial FFs only educated guesses

Pion Production

discrepancy between elementary data sets \rightarrow impossible to determine 3 axial formfactors New pion data on elementary target desparately needed! Institut für

JPARC 02/2014

Theoretische Physik

USTUS J IEBIG

UNIVERSITÄ

Comparison with other generators

Institut für Theoretische Physik JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Pion Spectra in MB

Institut für Theoretische Physik

Pion Production in T2K

Δ dominant only up to 0.8 GeV

Measurement of π^+ production between about 0.5 and 0.8 GeV would be clean probe of Δ dynamics.

Oscillation and Energy Reconstruction

- For nuclear targets QE reaction must be identified to use the reconstruction formula for E_v exp: 1 lepton, no pion, any number of other hadrons
- But: exp. definition of QE cannot distinguish between true QE (1p-1h), N* and 2p-2h interactions
- Many different reaction mechanisms, besides true QE, can contribute to the same outgoing lepton kinematics

0 Pion Events from GiBUU

From Coloma & Huber: arXiv:1307.1243v1

Energy-Reconstruction

Reconstr. energy contains a superposition of many true energies:

- 1. broadening due to Fermi motion
- 2. High energy tails due to reaction mechanisms other than QE

T2K migration matrix

T2K Flux Target: ¹⁶O

Oscillation signal in T2K v_{μ} disappearance

Gibuu

Martini

Institut für Theoretische Physik

Oscillation signal in T2K v_{μ} disappearance

JUSTUS-LIEBIG

UNIVERSITĂ

GIESSEN

Sensitivity of oscillation parameters to nuclear model

reconstructed from naive QE dynamics

P. Coloma, P. Huber, arXiv:1307.1243, July 2013 Analysis based on GiBUU

T2K

Oscillation signal in T2K δ_{CP} sensitivity of appearance exps

Uncertainties due to energy reconstruction as large as δ_{CP} dependence

JPARC 02/2014

Institut für Theoretische Physik

Sensitivity of T2K to Energy Reconstruction

Fig. 2. $\mathcal{P}_{\mu e}$ in matter versus neutrino energy for the T2K experiment. The blue curves depict the normal hierarchy, red the inverse hierarchy. Solid curves depict positive θ_{13} , dashed curves negative θ_{13}

MINERvA

Fsi are most important, but different, for pions and kaons

JPARC 02/2014

Institut für Theoretische Physik

LBNE Oscillations

Near detector

Survival $\mu \rightarrow \mu$

Appearance $\mu \rightarrow e$

Solid: true, dashed: reconstructed

JPARC 02/2014

Institut für Theoretische Physik USTUS J IERIG

UNIVERSIT

GIESSEI

How to proceed

- Generator is an important part of any experiment: Need generator for transformation reconstructed energy → true energy
- at the end of a very sophisticated experiment you do not want to have someone with a ,crummy' code to mess up your data!
- Generator-Development must be integral part of any experiment (and its funding)!

Summary

- Energy reconstruction essential for precision determination of neutrino oscillation parameters (and neutrino-hadron cross sections)
- Energy reconstruction requires a quantitative understanding of all reaction mechanisms
- Precision era of neutrino physics requires much more sophisticated generators and a dedicated effort in theory

