Hypernuclear Physics An Overview on Hypernuclear Spectroscopy

T. Motoba (Osaka E-C)

Workshop on J-PARC hadron physics February 10-12, 2014, Tokai

CONTENTS

- 1. Hypernuclear production process
- 2. Structure of Light hypernuclei and Y-N interaction properties
- 3. Prospects of medium-heavy hypernuclear production
- 4. New aspects observed/expected in strangeness manybody systems
 - 4-1. shrinkage effects,
 - **4-2.** Appearance of genuinely hypernuclear states,
 - 4-3. Coupling of Λ with nuclear collective motions such as rotation
- 5. Emphasize to compare different production proceses
- 6. Ξ -hypernuclei and double- Λ hypernuclei

1. Hypernuclear production

Hypernuclear Chart

Taken from N. Nakamura, based on O. Hashimoto and H. Tamura 4

Hyperon recoil momentum and the transition operator determine the reaction characteristics

Selectivity of hypernuclear production

(K-,π-) at p=0.8 GeV/c:

Recoilless production of Λ substitutional states with $\Delta L=0,1$

(π+,K+) at p=1.05 GeV/c:

Natural parity high-spin stretched states

(e,e'K+), (γ,K+) at p=1.3 GeV/c: Unnatural parity high-spin states

EXP from JLAB, (2009, Nakamura)

2. Structure of light hypernuclei and Λ -N interaction properties

Three factorse

(1) p-shell hypernuclei: detailed shell-model calculations have been performed.

Two-body AN effective interaction Dalitz and Gal, Ann. Phys. 116 (1978) 167 Millener et al., Phys. Rev. C31 (1985) 499

$$V_{\Lambda N}^{\text{eff}} = V_0(r) + \frac{V_{\sigma}(r) \, \tilde{s}_A \, \tilde{s}_N}{4} + \frac{V_{\Lambda}(r) \, \tilde{l}_{AN} \, \tilde{s}_A}{4} + \frac{V_N(r) \, \tilde{l}_{AN} \, \tilde{s}_N}{5} + \frac{V_T(r) \, S_{12}}{5}$$

$$\frac{1}{p-\text{shell} : 4 \text{ radial integrals for } p_N \, s_A \, w.f.}$$

(2) Cluster-model calculations have been performed extensively by several authors also for light p-shell hypernuclei:

Microscopic α + x + Λ model (x = p,n,d,t,h, α)

(3) After all progress of experiments with "Hyperball" High-resolution γ -ray measurements have been done successfully in p-shell region

\rightarrow $\sigma.\sigma$ and spin-orbit interactions have been deduced

High-resolution γ-ray measurements

(H Tamura et al)

PRL 93 (2004) 232501

Spin dependence: remarkable differences in $V_{\Lambda N}$

Repulsion due to strange. Comments: mboon exchange (K. K# 15) • Odd state { ND ------ strongly attractive (-40.5 MeV) Others ----- vanishing or repulsive • Even state { NS0 ------ ³S₁ attraction: too small others ------ the sums are similar. (15+35) NS = NSo + (s.p. potential in the intermediate state) 5 This gives rise to strengthen 35 because of the strong AN-ZN coupling in the • 15, 35, in JA, JB • TOTAL UA : JA≈JB≈NF≈NS However, Singlet/triplet very much from each other. ND NF NS

Nijmegen B-B interaction model improved by taking account of hypernuclear data

Density dependence of Nijmegen NSC97f model (YNG-type effective interaction)

Elem. ampl. Theor. prediction vs. (e,e'K⁺) exp.

Possible test of $\gamma p \rightarrow \Lambda K$ ampl.

Comparison of isobar and Regge-plus-resonance models

- H2: isobar model with hadronic f.f.; fit to CLAS data; nucleon resonances: $S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1895)$; hyperon resonances: $S_{01}(1670)$, $S_{01}(1800)$
- RPR: fit to CLAS and LEPS data (cross sections) with resonances $S_{11}(1535) S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1895)$; multidipole-Gauss hadronic f.f.;

motivated by RPR-2011B [Lesley De Cruz, PhD thesis, Ghent University, 2011]

RPR-2007: Corthals et al, 2007, version RPR-2+D13

P.B., M. Sotona, Nucl. Phys. A 835 (2010) 246

(From P. Bydzovsky)

Theor. vs. Exp. \rightarrow Test of elem. Ampli.

A possible test of models at forward angles

DWIA calculation of the cross sections for the electroproduction of hypernuclei M. Sotona, S. Frullani, Prog. Theor.Phys.Suppl.117(1994)151

elementary amplitude: Saclay-Lyon A

JLab data E94-107: W= 2.2 GeV, $Q^2=0.07 (GeV/c)^2$

P. B., M. Sotona, Nucl. Phys. A 835 (2010) 246

3. We need high resolution data for medium-heavy hypernuclei to make serious test of Λ-N interaction properties

In heavier mass region only $^{89}Y(\pi+,K+)$ case seem to provide good-energy resolution data.

DWIA analysis with core-excitation reproduces cross section ratios among a series of pronounced peaks and sub-peaks.

Left : Hotchi et al., PRC 64 (2001) ⁵¹V, ⁸⁹Y, Right:Hasegawa et al., PRC 53 (1996) 139 La, 208 Pb

H. HOTCHI et al.

T. HASEGAWA et al.

gions. T $0.006 \ \mu$ the same data, The 0.01 µb ground e by the tr assumed fitting.

The $B_{\Lambda} = 11$ two lar (π^+, K^+) neutron- $[0p_{3/2}^{-1}, p_{3/2}]$ was sho [15]. The t though 1 was disc coupling

195

²⁸Si(e,e'K⁺)²⁸ AI – First Spectroscopy of ²⁸ AI

Seems promising, (waiting for the finalization of analysis)

⁴⁰Ca (LS-closed shell case): high-spin states with natural-parity (2⁺,3⁻,4⁺)

Single Single particle energy of Λ

(e,eK⁺), high resolution (π^+ ,K⁺)

±*(s_\, p_\, d_\, j_\,.*

 γ spectroscopy for E1($p_A \rightarrow s_A$)

est of Bethe-Goldstone theory (Origin of gle particle motion) ι*_N is not measurable, but m*_A is. nderstand effective interactions uantitatively

Drigin of nuclear LS splitting
(2-body LS + tensor + ?)

Probe hadron modifications
I nuclear matter?
aryons and bare nuclear forces
nay change in nucleus)
— theoretical challenge

4. New aspects observed/expected in strangeness many-body systems

4-1. Shrinkage effects by Λ -addition

Predicted

Motoba et al. 3-cluster model(1983) Hiyama et al. 3- and 4-cluster model (1998)

Confirmed EXP. Tamura et al (1998, 2000,2001) Shrinkage due to Λ participation ("glue-like role" of Λ) T. Motoba, H. Bando and K. Ikeda, Prog. Theor.Phys.**70** (1983) predicted by *Microscopic* α+d+Λ model

29

Renewed Calculation by E. Hiyama, M. Kamimura,
K. Miyazaki, and T. Motoba, Phys. Rev. C59, 2351 (1999), *Microscopic* Λ5He+p+n model
to see free p and n dynamics.

FIG. 3. Jacobian coordinates of the three rearrangement channels of the "core" +N+N model. Here, "core" is α for the A=6 nuclei and ${}^{5}_{\Lambda}$ He for the A=7 hypernuclei.

B(6Li,E2:3+ \rightarrow 1+) vs. B(\wedge 7Li,E2;5/2+ \rightarrow 1/2+)

Contraction of R_{core}-(pn) without changing p-n distribution (Hiyama et al, 1998)

Shrinkage: glue-like role of Λ *confirmed*

	Dalitz	Motoba	Hiyama	EXP.
B(E2) in e^{2} fm ⁴	-Gal	et al.	et al.	Tamura
_ ()	Shell M.	3-Cluster	3-Cluster	et al (1998, 2000,2001)
	(1970)	(1903)	(1990)	2000,2001)
B(M1:3/2+→1/2+)	0.364	0.352	0.322	-
B(E2:5/2+ →1/2+)	8.6	2.46	2.42	4.1+-1.1
eff.chrg: δe=0.15e		(4.16)	(4.09*)	
B(E2:5/2+ →3/2+)	3.1	0.40	0.74	
B(E2 :5/2+→all)/ B(E2) c	1.0	0.44	0.33	
	assumed			
Гв		0.49	0.32	
Rcd(⁷ Li)/Rad(⁶ Li)		0.83	0.75	0.87
Lifetime(5/2+) ps		6.56	6.67	5.2+-1.4 ₃₃

4. New aspects observed/expected in strangeness many-body systems

4-2. Appearance of genuinely hypernuclear states

Substitutional ...

S=1/2; L=1, 2, 3, 4 (K=1) Substitutional 9Be-analogue

S=1/2; L=1.3, 5 (K=0) 50[] genuinely hypernuclear

S=1/2; L=0⁺, 2⁺, 4⁺ ⁸Be-analogue

All the existing exp.data can be explained.

CAL: T. Motoba, H. Bando, K. Ikeda: PTP (1983) T. Yamada etal., P.R. C. 38 (1988)

This concept is extended to sd-shell

Coupling of Λ hyperon with triaxial rotational motions in ^{24}Mg (Isaka et al, PRC87(2013)

Results: Excitation spectra

• 3 bands are obtained by Λ hyperon in *p*-orbit \rightarrow Splitting of the *p* states

- ²⁴Mg \otimes Ap(lowest), ²⁴Mg \otimes Ap(2nd lowest), ²⁴Mg \otimes Ap(3rd lowest)

38

4. New aspects observed/expected in strangeness many-body systems

4-3. Coupling of Λ with nuclear collective motions such as rotation

As a promising candidate to observe it in the *fp*-shell region, we propose to use ${}^{59}\text{Co}(\gamma, \text{K}^+) {}^{59}{}_{\Lambda}\text{Fe}$

⁵⁹Co (γ,K⁺) ⁵⁹, Fe

(just preparing CAL)

Interesting to see dynamical coupling of a hyperon with rotation without **Disturbance due to** the Pauli principle

5. Emphasize to compare different production proceses by making use of the J-PARC Kaon beam.

Hypernuclear states will be clarified by: (1) Compare different kinematics and angular distributions

(2) (K-, π - γ) coincidence measurement

Comparison of 3 theor. spectra

And more predictions for the J-PARC projects in

¹⁸F(¹⁸O) and ¹⁹ $_{\Lambda}$ F(¹⁹ $_{\Lambda}$ O) Energy levels

T=1 states are excited in (γ,K+)

Lightest sd-shell target: ¹⁹F

A's: p1/2-hole series, B's: p3/2-hole series

Umeya's Calculation

Results: Production cross sections of ${}^{19}F(K^-,\pi^-)$ and ${}^{19}F(\pi^+,K^+)$

6. Ξ -hypernuclei and double- Λ hypernuclei vs. S=-2 interactions

> One of the most interesting subjects at J-PARC Is to get a reliable answer on the existence of Ξ -hypernuclei, providing an important restriction on Ξ -N interaction.

> Another subject is to produce many double- Λ hypernuclei

Why E-hypernuclei?

1) They provide unique information on the *S*=-2 B-B interactions inaccessible otherwise.

2) High-priority experiment at J-PARC ($_{2009}$ -E-05: "Spectroscopic study of Ξ -hypernucleus via the $^{12}C(K-,K+) = ^{12}Be$ reaction" by T. Nagae et al.

 \rightarrow Realistic Calculations are required.

BNL-E885 P. Khaustov et al, PRC 61 (2000)**BS** strengths observed, but peaks not confirmed. Suggesting: only WS-pot. depth: U=12-14 MeV or less. "shallow"

As the second best candidates to extract information about the spin-, isospin-independent term V_0 , we propose to perform...

4-body cluster model (Hiyama et al, PRC66(2002)

FOUR-BODY CLUSTER STRUCTURE OF $A = 7 - 10 \dots$

Predict many possible bound states

7. Weak decays of hypernuclei

pi-mesonic decay

Nonmesonic decay

4. Mesonic decay of p-shell hypernuclei: The shell model works nicely to explain data.

Shell dependence predicted explained.

BNL + J.J. Szymanski et al., P.R. C43 (1991) KEK + A. Sakaguchi et al., P.R. C43 (1991)

7. Concluding remarks

1) I reviewed interesting topics selected in hypernuclear spectroscopy , by focusing the relation with production processes.

2) Emphasized novel aspects of many-baryon systems with hyperon(s).

3) I also emphasized importance of producing medium and heavy hypernuclei with good energy resolution.

4) Although I skipped the details of YN interactions, those experiments will provide with interesting dynamical structures together with YN interaction properties.

Thank you for your attention.