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Quark mass from QCD+QED simulation

[PRD82 (2010) 094508 [47pages]]

mu = 2.24± 0.10± 0.34 MeV

md = 4.65± 0.15± 0.32 MeV

ms = 97.6± 2.9± 5.5 MeV

md −mu = 2.411± 0.065± 0.476 MeV

mud = 3.44± 0.12± 0.22 MeV

mu/md = 0.4818± 0.0096± 0.0860

ms/mud = 28.31± 0.29± 1.77,

• MS at 2 GeV using NPR/SMOM scheme.

• Particular to QCD+QED, finite volume error is large: 14% and 2% for mu and md.

• This would be due to photon’s non-confining feature (vs gluon).

• Volume, a2, chiral extrapolation errors are being removed.

• Applications for Hadronic contribution to (g − 2)µ in progress.
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HALQCD アプローチ

場の理論：二体散乱の同時刻ベーテ・サルペータ振幅 φ(x,y)

量子力学：二体散乱の相対運動の波動関数 ψ(r)

第一原理計算で、固有値Eと固有状態ψは観測量として測定

→ハミルトニアンを特定する（逆問題）

HQCDψ(r) = Eψ(r)

粒子反粒子の対生成は無視
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近年、青木、初田、石井達に開発された 新しい手法+

●　格子123+から第一原理的に、核力ポテンシャルを決められる+

●　核子散乱データを必要としないため、予言が可能+

●+　素粒子ー原子核4宇宙　の連携+
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Phys. Rev.Lett.99 (2007) N. Ishii, S. Aoki, T. Hatsuda

QCDより核力
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非相対論近似

非局所的ポテンシャルの元でのシュレーディンガー方程式
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Figure 2: Plots of ∇2φ(r)/φ(r) = 2µ(V (r) − E) in PS channel (a)
and V channel (b) for each quark mass. The potentials show the
linear plus Coulomb form.

and 3 (V2(r)). The values of the string tension obtained in
this study are comparable to those predicted from Wilson
loop within the errors, while Coulomb coefficients in V1(r)
are larger than those predicted from Wilson loop. Since
our simulation includes all the quark mass effects, V1(r) is
modified by the higher order effect of 1/mq expansion. As
shown in Table 3, if we employ the fit function V2(r) in
which O(1/mq) terms are taken into account, the Coulomb
coefficients become smaller and are comparable to the val-
ues from Wilson loop. The fit functions V2(r) are shown
in Fig. 3 with solid curves.

5. Discussion and summary

We have studied the inter-quark potentials between
a quark and an anti-quark (q̄-q potentials) from the q̄-
q Nambu-Bethe-Salpeter (NBS) wave functions. For this
purpose, we have utilized the method which has been re-
cently developed in the calculation of nuclear force from
QCD [8, 9]. We have calculated the NBS wave functions
for the q̄-q systems with four different quark masses in
pseudo-scalar and vector channels and obtained the q̄-q
potentials through the effective Schödinger equation. In
this framework, the q̄-q potentials basically contains full
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Figure 3: Plots of the potential with arbitrary constatnt energy shift
V (r) − E = ∇2φ(r)/(2µφ(r)) in PS channel (a) and V channel (b)
for each quark mass.

quark motions with the finite masses. As a result, we have
found that the shapes of the q̄-q potentials are the linear
plus Coulomb form which is similar to the infinitely heavy
Q̄-Q potential obtained from Wilson loop.

For the fitting, we have employed two types of fitting
functions. One is the linear plus Coulomb form regarded
as the leading order (LO) terms in the 1/mq expansion.
The other function includes the next leading order (NLO)
terms in addition to LO terms. The fitting results with
LO terms reveal that the Coulomb coefficients depend on
the quark masses and are larger than those predicted from
Wilson loop. On the other hand, if we have employed the
NLO terms together with the LO terms, the Coulomb co-
efficients become smaller and are comparable to the value
from Wilson loop. With the both fitting functions, we
have obtained the string tension which is comparable to
the value from Wilson loop.

This is the first step to study the q̄-q potentials from the
NBS wave functions, and the main purpose of the present
study is to show that the method is applicable to the q̄-q
potentials. We find that the obtained q̄-q potential has the
basic property of that obtained from Wilson loop. There-
fore, this method can be used for the study of the q̄-q
potentials with finite quark masses.

4

クォーク・反クォーク系にへの適用

∇2φQQ̄(r)
φQQ̄(r)

= mQ [V (r) − E]

Ikeda-Iida, arXiv:1011.2866
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クォーク・反クォーク系にへの適用

∇2φQQ̄(r)
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クォーク・反クォーク系に適用するとき
の大きな問題

クォーク質量？

E� = E − 2mQ

µ =mQ/2
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Q. How can we determine a quark mass in the Schrödinger equation?

A. Look into asymptotic behavior of wave functions at long distances 

for Γ = PS, V
�
− ∇

2

mQ
+ VQQ(r) + SQ · SQVspin(r)

�
φΓ(r) = EΓφΓ(r)

Novel determination of quark mass

For short range potential problem

This is valid even for bound states
reduced mass
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Unfortunately, the QCD potential is not short -ranged, 
rather a long-range confinement potential.
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Figure 5.2: The reduced QQ̄ BS wave functions

uΓ(r) for the 1S-charmonium states (Jψ and ηc),
as a function of spatial distance r. The meson

states are specified in the legend. A dashed line

corresponds to a spatial lattice extent La/2 ≈
1.44 fm in the on-axis direction. Two color solid

curves are wave functions given by solving the

Schrödinger equation with the charmonium poten-

tial and the quark kinetic mass determined from

lattice QCD as inputs.
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Figure 5.3: The determination of a quark ki-

netic mass defined in the charmonium system

through the BS amplitude method. We obtain

the quark kinetic mass mQ from the long-distance

asymptotic values of difference −(∇2φV /φV −
∇2φP /φP )/Ehyp. A shaded band represents the

fit range of 6 ≤ r/a ≤ 7
√
3 with the statistical

error estimated by the jackknife method.

For the derivative, we use the discrete Laplacian operator ∇2 defined in polar coordinates. The ratios of

∇2φΓ/φΓ are evaluated by a weighted average of data points in the range 33 ≤ t/a ≤ 47. The values of

mQ are evaluated by a weighted average of data points of −(∇2φV /φV −∇2φP /φP )/Ehyp in the range

of 6 ≤ r/a ≤ 7
√
3 where VS(r) should vanish. The detailed results of the fitting are summarized in

Table. 5.4.

The charm quark mass obtained in this study is somewhat heavier than the usual quark kinetic mass

in quark potential model. For example, the value of it is about 17% larger than the one adopted in

nonrelativistic potential (NRp) model in Ref. [17]. This difference should not be taken seriously since the

spatial profile of the spin-spin potential from lattice QCD is slightly different from the one used in the

NRp models as we will discuss later.

5.2.4 Charmonium potential

Spin-independent potential

Once the quark kinetic mass is determined, we can easily calculate the central spin-independent and

spin-spin charmonium potentials from the QQ̄ BS wave function through Eq. (3.21) and Eq.(3.22). First,

we show a result of the spin-independent charmonium potential V (r) in Fig. 5.4, where the constant term

is subtracted to set V (r0) = 0 with the Sommer scale, r0 ≈ 0.5 fm. The spatial grid points along on-axis,

off-axis I and off-axis II, where effective grid spacings ã/a = 1,
√
2 and

√
3, are only used to calculate the

charmonium potential. The data taken from other directions, e.g. r = (2na, na, na), n ∈ Z, suffer from

S-wave w.f. for different spin states48 CHAPTER 4. QUENCHED SIMULATION
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A difference does not suffer from the confinement nature.
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Vspin(r) = 0Under a simple, but reasonable assumption of 
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FIG. 3: The determination of quark kinetic mass within

the BS amplitude method. The values of −(∇2φV /φV −
∇2φP /φP )/Ehyp as a function of the spatial distance r are

shown in this figure. The quark kinetic mass mQ is obtained

from the long-distance asymptotic values of −(∇2φV /φV −
∇2φP /φP )/Ehyp. Horizontal solid line indicates a value of

quark kinetic mass obtained by fitting a asymptotic constant

in the range 0.54 fm � r � 1.10 fm. A shaded band indi-

cates a statistical error estimated by estimated by jackknife

method.

differentiate directions. In the on-axis (r ∝ (1, 0, 0)) and

the two off-axis directions (r ∝ (1, 1, 0) and (1, 1, 1)), the

effective grid spacings correspond to ã = a,
√

2a,
√

3a,

respectively.

The difference of ratios ∇2φΓ/φΓ at each r are ob-

tained by a constant fit to the lattice data with a reason-

able χ2/d.o.f. value over the range of time slices where

two-point functions exhibit the plateau behavior (33 ≤
t/a ≤ 47). Then the values of mQ are determined for

each directions from asymptotic values of −(∇2φV /φV −
∇2φP /φP )/Ehyp in the range of 6 ≤ r/a ≤ 7

√
3 where

VS(r) should vanish. Finally we average them over three

directions, and then obtain mQ = 1.784(23)(6)(20) GeV.

The first error is statistical, given by the jackknife anal-

ysis. In the second error, we quote a systematic uncer-

tainty due to rotational symmetry breaking by taking the

largest difference between average value and individual

ones obtained specific directions. The third ones are the

systematic uncertainties due to choice of tmin of the time

range used in the fit. We vary tmin over range 33 − 41

and then take the largest difference from the preferred

determination of mQ.

The charm quark mass obtained in this study is some-

what heavier than the usual quark kinetic mass in NRp

model. For example, the quark kinetic mass adopted in

Ref. [4] is about 17% smaller. This difference however

should not be taken seriously, because the value of mQ

in the NRp model highly depends on a constant term V0

of Cornell potential, and V0 is actually forced to be zero

in many of NRp models. Also the spatial profile of the

spin-spin potential from lattice QCD is slightly different

from the one used in the NRp models as we will discuss

later.
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FIG. 4: Central spin-independent and spin-spin charmonium

potentials calculated from the BS wave functions in the dy-

namical QCD simulation with almost physical quark masses.

In the upper panel, we show the spin-independent potential

V (r). A solid (dot-dashed) curve is the fit results with the

Cornell (Cornell plus log) form. The shaded bands show

statistical uncertainties in the fitting procedure which the

employs the jackknife method. Note that the spin-averaged

eigen-energy of 1S-charmonium state Eave is not subtracted

in this figure. A horizontal line indicates the level of open-

charm (D0D̄0
) threshold ≈ 3729 MeV. In the lower panel,

we show the spin-spin potential VS(r). A solid (dot-dashed)

curve corresponds to fitting results with exponential (Yukawa)

form. The inset shows a magnified view. In both plots, the

phenomenological potentials adopted in a NRp model [4] are

also included as dashed curves for comparison.

C. Spin-independent interquark potential

Once the quark kinetic mass is determined, we can eas-

ily calculate the central spin-independent and spin-spin

charmonium potentials from the QQ̄ BS wave function

through Eq. (6) and Eq. (7). First, we show a result

of the spin-independent charmonium potential V (r) in

Fig. 4. The constant energy shift Eave is not subtracted.

At each distance r, the values of interquark potentials

V (r) and VS(r) is practically determined by constant fits

to data points over time slices where two-point functions

! PACS-CS configurations at mπ=156 MeV

mc = 1.784(23) GeV
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only. The effects of the spin-spin potential, treated in first-
order perturbation theory, are added in the second column.

experimental value [17]. For the excited 2S states our
approach predicts masses for ηc(2S) and ψ(2S) that are
slightly too large (see Fig. 4). However, these states are
close to the DD threshold. Going beyond this threshold
requires a complex (energy-dependent) cc potential or an
explicit treatment of coupled channels. While the imag-
inary part starts at the opening of the DD channel, the
corresponding dispersive real part induces an attractive
shift of the 2S states. In second-order perturbation the-
ory this shift is proportional to the squared cc → DD
transition matrix element.
The predicted size of the hyperfine splittings is quite

sensitive to the value of the mass m in the denominator
of Eq. (12). For example, choosing m = 1.5 GeV instead
of the kinetic quark mass (1.74 ± 0.03) GeV [15] would
give rise to a 1S mass splitting that is about 20% too
large. This is in contrast to variations of the matching
position rm and the infrared cutoff µS , which affect the
hyperfine splittings only marginally.
The spin-spin potential, as constructed in the previ-

ous section, produces a non-vanishing but small splitting
between the 1P singlet and triplet states, namely hc(1P)
and χcj(1P), unlike the δ-function spin-spin potential.
In first-order perturbation theory the effect amounts to
a mass difference of (8.2 ± 0.5) MeV. The full inclu-
sion of the spin-spin potential VS(r) in the Schrödinger
equation gives rise to a slightly larger mass splitting of
(8.3± 0.5) MeV.
The value of the mass parametermPS(µC), determined

in our approach by fitting to empirical charmonium spec-

tra, can be translated into alternative schemes for quark
masses. The PS mass mPS(µC) is first converted to the
pole mass and in a second step mapped onto the MS mass
mc ≡ mMS(mMS). This procedure is described in detail
in Ref. [6]. Applying the same method here, we find for
the charm-quark mass in the MS scheme

mc = (1.21± 0.04) GeV, (15)

in good agreement with other determinations [6, 17].
We close with a few remarks concerning bottomo-

nium: until now, the bottomonium spin-spin potential
has not been studied within the new lattice QCD ap-
proach based on NBS amplitudes. An extrapolation of
the spin-spin potential from charmonium to bottomo-
nium can be done by simply assuming a 1/m2 depen-
dence of the lattice potential and allowing for varia-
tions of the mass parameter m. In the perturbative part
of the potential we account furthermore for a modified
running of αs(q) due to four massless flavors and use
αs(4.2 GeV) = 0.226± 0.003 as an input. The empirical
mass splitting of (69 ± 3) MeV [17] between ηb(1S) and
Υ(1S) can be reproduced either for a kinetic bottom-
quark mass m = 4.7 GeV (with the spin-spin poten-
tial treated in first-order perturbation theory), or with
m = 4.3 GeV (if the spin-spin potential is fully included
in the Schrödinger equation). It will be interesting to
have available the corresponding lattice QCD results for
bottomonium.

IV. SUMMARY

Central and spin-spin potentials for charmonium have
been derived by combining perturbative QCD at small
distances (r < 0.14 fm) with results from lattice QCD
for larger distances up to r # 1 fm. By defining the
perturbative potentials via a restricted Fourier transfor-
mation this matching has been made possible. We have
found that the central quark-antiquark potential, con-
structed from NBS amplitudes in full QCD lattice simu-
lations [5, 15], agrees within errors with the static-plus-
1/m potential derived in the Wilson-loop formalism [2–
4]. The matched spin-spin potential produces hyperfine
splittings for the S-wave charmonium states that are in
good agreement with experiment. The MS mass of the
charm quark also agrees well with other determinations
of this QCD parameter.
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zero hyperfine splitting measured in experiments is given
by the point-like potential widely adopted phenomeno-
logical quark potential model. One possibility to resolve
this issue is that the spin-spin force is week attractive
in the intermediate region compensating a repulsion at
short distances.

Our theoretical calculations for charmonium states be-
low the open-charm threshold are basically in good agree-
ment with the experimental measurements. The point we
wish to emphasize here is that our novel approach has
no free parameters in solving the Schrodinger equation
opposed to the phenomenological NRp model. All of the
parameter are fixed by lattice QCD which uses three light
hadron masses (Mπ, MK and MΩ) for fixing the lattice
spacing and light quark hopping parameters. Only ex-
perimental values of ηc and J/ψ masses in charmonium
are used to determine the charm quark parameters in the
RHQ action. In this sense the new approach proposed
here is distinctly different from existing phenomenologi-
cal quark potential models.

Let us now attempt to extend straightforwardly our
approach to above the open-charm threshold. Only the

spin-averaged values are quoted for the P and D spin-
triplet states: M(n3PJ) = (Mn3P0 +3Mn3P1 +5Mn3P2)/9
and M(n3DJ) = (3Mn3D1 + 5Mn3D2 + 7Mn3D3)/15.
In order to provide mass splittings among spin-triplet
states, the tensor and spin-orbit potentials is required.
First of all, we find that the values obtained from the
NRp model with lattice inputs above the open-charm
threshold fairly agree with the existing experimental
data, although errors are relatively large. However, we
are not in a position to give a realistic physical picture
to the higher charmonium states above the open-charm
threshold. This is because there are the following re-
marks on the calculation including the higher charmo-
nium states.

(a) The higher-lying charmonium states are suffered
from the systematic uncertainty from the long range part
of the potential. For the long range part of the charmo-
nium potential more than about 1.1 fm, we have no rea-
sonable date due to the localized wavefunction. There-
fore we need to calculate the potential form higher char-
monium states, or extrapolate the lattice data points to
obtain the slope of the confinement potential. In the lat-
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