

Fragmentation function measurements at Belle

High-energy QCD and nucleon structure workshop March 7 , 2014

> Ralf Seidl (RIKEN)

Outline

- Introduction on Fragmenation
- Unpolarized fragmentation functions and global FF fits
 - Light hadrons
 - Transverse momentum dependence
 - Heavyier hadrons and flavors
- Polarized FFs
 - Collins fragmentation
 - Interference fragmentation and global analysis
- MC tuning → impact on general B physics backgrounds
- Old things in new light event shapes and α_s
- Outlook

What are fragmentation functions?

How do quasi-free partons fragment into confined hadrons?

- Does spin play a role ? Flavor dependence?
- What about transverse momentum (and its Evolution)?

What experiments measure:

- Normalized hadron momentum in CMS: $e^+e^- \rightarrow h(z) X$; $z = 2E_h / \sqrt{s}$
- Hadron pairs' azimuthal distributions: e⁺e⁻→h₁ h₂ X; <cos(φ₁+φ₂)>;
 Collins FF、Interference (IFF)
- Cross sections or multiplicities differential in z: ep->hX, pp->hX

Additional benefits of the FF measurements:

- Pol FFs necessary input to transverse spin SIDIS und pp measurements to extract Transversity distributions function
- Flavor separation of all Parton distribution functions (PDFs) via FFs (including unpolarized PDFs)
- Baseline for any Heavy Ion measurement
- Access to exotics?

R.Seidl:QCD studies

RIKEŀ

Theory definition

- Fragmentation functions are defined similar to parton distribution functions as bi-local operators: $D_{q}^{h}(z) \propto \int dy^{-} e^{iP^{+}/zy^{-}} \mathbf{T}r\gamma^{+} \langle 0|\psi(y^{-})|hX\rangle \langle hX|\overline{\psi}(0)|0\rangle$
- Density of finding a hadron h with fractional energy $z = P^{h}/P^{q}$ off a parton q
- Non-perturbative object \rightarrow measurements
- Universal (same function in different processes)
- Not accessible on the lattice (due to final state hadrons)
- Spin dependent FFs similar after applying corresponding Dirac matrices and non LC displacements y

Х

Access to FFs

- SIDIS: $\sigma^{h}(x, z, Q^{2}, P_{h\perp}) \propto \sum e_{q}^{2}q(x, k_{t}, Q^{2})D_{1,q}^{h}(z, p_{t}, Q^{2})$
 - Relies on unpol PDFs
 - Parton momentum known at LO
 - Flavor structure directly accessible
- Transverse momenta convoluted between FF and PDF

pp:

 σ

$$h^{h}(P_{T}) \propto \int_{x_{1},x_{2},z} \sum_{a,a' \in a,a} f_{a}(x_{1}) \otimes f_{a'}(x_{2}) \otimes \sigma_{aa'} \otimes D^{h}_{1,q}(z)$$

- Relies on unpol PDFs
- leading access to gluon FF
- Parton momenta not directly known

e+e-:

$$\sigma^{h}(z,Q^{2},p_{t}) \propto \sum_{q} e_{q}^{2} \left(D_{1,q}^{h}(z,p_{t},Q^{2}) + D_{1,\overline{q}}^{h}(z,p_{t},Q^{2}) \right)$$

- No PDFs necessary
- Clean initial state, parton momentum known at LO
- Flavor structure not directly accessible

Unpolarized fragmentation functions

 $D_{1,q}^{h}(z,Q^{2})$

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

Old e+e- data used in all fits

- Most data obtained at LEP and SLC energies,
- At lower CMS energies very little data available
- 3-jet fragmentation to access gluon FF theoretically difficult
- Gluon fragmentation
 from evolution not yet well
 constrained
- Higher z FFs (>0.7) hardly available

Recent global fits

- 3 recent global fragmentation function paramterizations:
 - Hirai, Kumano, Nagai, Sudoh (HKNS): Phys.Rev. D75 (2007) 094009
 - e+e- world data, uncertainties
 - Albino, Kniehl, Kramer (AKK): Nucl.Phys. B803 (2008) 42-104
 - e+e- and pp data, large -z resummations, uncertainties
 - De Florian, Sassot, Stratmann (DSS): Phys.Rev. D75 (2007) 114010
 - e+e-, SIDIS and pp data, uncertainties

Current uncertainties

DSS: Phys.Rev. D86 (2012) 074028

9

RIKEN

R.Seidl:QCD studies

B factory data

Phys.Rev.Lett. 111 (2013) 062002, Leitgab, RS, et al (Belle)

 High precisions of B factory data allows extraction of precise FFs and gives lever arm for gluon FF extraction

Inclusion of B-factory data in fits

- Differences in normalization between Belle and Babar likely due to different treatment of
 - Initial state radiation (Belle shows only fraction within 0.5% around nominal sqrt(s)= 10.52GeV which excludes ~35% of events)
 - Weak decays (either none/full vs K°,Λ removal)

Expected Improvements for Pion and

Kaon FFs

Kawamura (KEK, HKNS fit) at FF2012, based on Belle preliminary data

π^+ fragmentation

K⁺ fragmentation

Unpolarized 2-hadron

fragmentation

- Detect two hadrons simultaneously: e⁺e⁻→hhX
- If two hadrons in opposite hemispheres one obtains sensitivity to favored/ disfavored fragmentation:
- Unlike-sign pion pairs (U): (favored x favored + unfavored x unfavored)
- Like-sign pion pairs (L): (favored x unfavored + unfavored x favored)
- any charge hadron pairs (C):
 (favored + unfavored) x (favored + unfavored)

Favored

= $u \rightarrow \pi^+, d \rightarrow \pi^-, cc.$

Unfavored

= d $\rightarrow \pi^+$,u $\rightarrow \pi^-$,cc.

RIKE

- Difficulty: contribution from one quark fragmentation q→hhX
- → measure all three:
 - (hh)_{jet1} X
 - (h) _{jet1}(h) _{jet2}X
 - hhX,
 () requires thrust cut

Unpolarized outlook: overcoming the flavor

blindness of e+e-

- Unlike-sign pion pairs (U): (favored x favored + unfavored x unfavored)
- Like-sign pion pairs (L): (favored x unfavored + unfavored x favored)

- Reconstructed udsc Monte Carlo (Pythia/Evtgen in Belle acceptance)
- opposite hemisphere pion pairs

R.Seidl:QCD studies

Transverse momentum dependence

Aka un-integrated PDFs and FFs

 $D_{1,q}^{h}(z,Q^2,k_t)$

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

Hermes P_T dependence

Phys.Rev. D87 (2013) 074029

- Width increases with z
- K- (all sea) wider
- p and d distributions similar → little favored disfavored difference
- Full 5 dim data available at: <u>http://hermesmults.appspot.com/</u>

Kt dependence at B factories

- Again very clean initial state in e⁺e⁻
- q-qbar axis can be approximated by thrust axis or detect individual jet axes
- Analysis started and ongoing

Exotic Fragmentation functions Kumano (KEK) FF12 and PRD77(2008)017504

 General Idea: Use large difference between favored (valence) and disfavored (sea) of hadrons to find valence structure of potentially exotic hadrons, eg fo(980):

1 1				
Туре	Configuration	2nd Moment	Peak z	
Nonstrange $q\overline{q}$	$(u\overline{u} + d\overline{d})/\sqrt{2}$	M(s) < M(u) < M(g)	$z_{\max}(s) < z_{\max}(u) \simeq z_{\max}(g)$	
Strange 97	<u>s</u>	$M(u) < M(s) \leq M(g)$	$z_{\max}(u) < z_{\max}(s) \simeq z_{\max}(g)$	
Tetraquark	$(u\overline{u}\overline{s}\overline{s} + d\overline{d}\overline{s}\overline{s})/\sqrt{2}$	$M(u) = M(s) \leq M(g)$	$z_{\max}(u) = z_{\max}(s) \simeq z_{\max}(g)$	
$K\overline{K}$ Molecule	$(K^+K^-+K^0\bar{K}^0)/\sqrt{2}$	$M(u) = M(s) \leq M(g)$	$z_{\max}(u) = z_{\max}(s) \simeq z_{\max}(g)$	
Glueball	88	M(u) = M(s) < M(g)	$z_{\max}(u) = z_{\max}(s) < z_{\max}(g)$	

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

RIKE

R.Seidl:QCD studies

Charmed Fragmentation

PRL.95, 142003 (2005)(Babar) PRD73, 032002 (2006) (Belle) PRD75, 012003 (2007)(Babar) PRL 99, 062001 (2007)(Babar)

- Heavier particles generally plotted vs normalized momentum $x_p = \frac{P^h}{P_{max}^h}$
- Unlike light hadrons charmed hadrons
 contain large fraction
 of charm quark
 momentum

KEKFF, Feb 15, 2014

Spin dependent fragmentation

 $H_{1,\boldsymbol{q}}^{\boldsymbol{h},\perp}(z,Q^2,k_t)$

 $H_{1,a}^{h_1,h_2,\triangleleft}(z,Q^2,M_h)$

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

Collins fragmentation function

J. Collins, Nucl. Phys. B396, (1993) 161

 \overline{S}_q

$$D_{q^{\uparrow}}^{h}(z, P_{h\perp}) = D_{1,q}^{h}(z, P_{h\perp}^{2}) + H_{1,q}^{\perp h}(z, P_{h\perp}^{2}) \frac{(\mathbf{k} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_{q}}{zM_{h}}$$

 ${ar p}_{h\perp}$

 h, \overline{p}_h

- Spin of quark correlates with hadron transverse momentum
- →translates into azimuthal anisotropy of final state hadrons

 \bar{k}

Collins fragmentation in e^+e^- : Angles and Cross section $cos(\phi_1 + \phi_2)$ method

25

RIKEK

KEKFF, Feb 15, 2014

Belle Collins asymmetries

- Red points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over like sign pion pair ratio : A^{UL}
- Green points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over any charged pion pair ratio : A^{UC}
- Collins fragmentation is large effect
- Consistent with SIDIS indication of sign change between favored and disfavored Collins FF

RS et al (Belle), PRL96: 232002 PRD 78:032011, Erratum D86:039905

Global Fit of Collins FF and Transversity (HERMES, COMPASS d, Belle)

- Latest SIDIS data not included inFIT
- Open questions:
 - TMD evolution unknown (however from Belle to HERMES no large differences seen)
 - Kt dependence from Assumption (Belle measurements planned)
- Interference FF (IFF) as independent Cross check

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

Phys.Rev.D75:054032,2007, update in Nucl.Phys.Proc.Suppl.191:98-107,2009

Collins outlook: Kaons, eta

- Need Kaon Collins fragmentation:
 - to understand HERMES/COMPASS kaon data
 - Flavor separation of transversity
 - Inflation of FF functions:
 - u,d $\rightarrow \pi$: 2
 - u,d,s $\rightarrow \pi$,K: 6+

- RHIC $\eta A_N s$ larger than π^0
- Sign change predicted for VMs

Interference Fragmentation (IFF) in e⁺e

- $e^+e^- \rightarrow (\pi^+\pi^-)_{jet_1}(\pi^+\pi^-)_{jet_2}X$
- Theoretical guidance by papers of Boer, Jakob, Radici[PRD 67, (2003)] and Artru, Collins[ZPhysC69(1996)]
- Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)]

Model predictions by:

•Jaffe et al. [PRL **80**,(1998)]

•Radici et al. [PR**D 65,**(2002)]

$$\mathrm{A} \propto \mathrm{H}_{1}^{\angle}(\mathrm{z}_{1},\mathrm{m}_{1})\overline{\mathrm{H}}_{1}^{\angle}(\mathrm{z}_{2},\mathrm{m}_{2})\mathcal{COS}(\varphi_{1}+\varphi_{2})$$

KEKFF, Feb 15, 2014

R.Seidl:OCD studies

Belle IFF asymmetries: (z₁x z₂) Binning

30

RIKEN

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

Belle IFF asymmetries: (z₁x m₁) Binning

R.Seidl:QCD studies

RIKEN

First transversity extraction from HERMES, COMPASS and Belle IFF data

Using Belle IFF and HERMES or COMPASS to extract transversity compared to Collins FF based global analysis:

Courtoy, Bacchetta, Radici: Phys.Rev.Lett. 107 (2011) 012001 and arXiv:1206.1836

HERMES: JHEP 0806 (2008) COMPASS: Phys.Lett. B713 (2012)

KEKFF, Feb 15, 2014

R.Seidl:QCD studies

- recent IFF analysis and Collins Transversity comparable
- →CollinsFF evolution weak?
- But many assumptions at this point
- STAR and PHENIX Preliminary data not yet used

32

IFF outlook

- Kaon related IFF analysis equally necessary for flavor decomposition
- Charged combinations (eg π^oπ) analysis also required
- Goal: flavor
 decomposition of
 transversity via IFF
 channel

- However: Requirements for flavor decomposition:
 - Unpolarized di-hadron FFs as baseline
 - Treatment of charm contribution

Charm separation in fragmentation analysis

- Problem: light quark and charm separation in fragmentation measurements difficult
 - Sucessfully performed for Collins case via charm enhanced D* candidate sample
 - For IFF measurements too large bias by D* selection→ not performed

 Best strategy: minimally biasing charm enhancement via displaced vertices with Belle2 vertex detector

Our signal is a Flavor Physicist's background (aka MC tuning)

- Continuum (udsc q-qbar pair production) fragmentation creates background for B physics measurements
- Most can be just fit empirically under peaking Backgrounds (ΔE, Mbc, inv mass)

- However, if general MC description inadequate backgrounds will also not match under peaks
- → Need to optimize the MC to best describe the continuum data

Comparison of light hadron

FFs to other tunes

Martin Leitgab (UIUC)

KEKFF, Feb 15, 2014

Event shapes

- Using the event shapes, especially 3jet cross sections one can obtain the size of the strong coupling α_S
- see the actual running of the coupling
- Other information about running coupling from DIS jets, tau decays, etc

Summary and Outlook

- Light and charmed hadron fragmentation function measurements ongoing but only the more obvious hadrons measured so far
 - Possibility to understand the process of fragmentation (and QCD) better
 - Potentially learn about exotics
 - Transverse momentum generation
 - Use for global QCD analysis of parton distribution functions
- Spin dependent fragmentation functions measured and ongoing
 - Spin analyzers

- Use for global QCD analysis of transversely polarized parton distribution functions
- MC tuning necessary for better agreement with Data
 - Also important as background source for B related measurements
 - Some initial studies performed also in Belle
 - Need to improve for future precision

Other fragmentation measurements

- Vector mesons and two particle resonances
- Lambda polarized fragmentation function
- Lambda spin transverse momentum correlation

 Local parity violation studies

Belle light hadron fragmentation activity

	RIKEN/RBRC	Illinois	Indiana	Bilbao	Titech
Unpol FFs $e^+e^- \rightarrow hX$: $e^+e^- \rightarrow (hh)X,$ (h)(h)X,hhX: Unpol k_T dependence:	Charged di- hadrons: Ralf Seidl	Charged hadrons (π,K,P): Martin Leitgab	π ⁰ ,η ^{0:} Hairong Li	P, long prd Charlotte Hulse Gr Gr Charlotte Hulse	ack: about start een:ongoin ey: finished
Collins FFs $e^+e^- \rightarrow (h)(h)X$: k_T dependence:	πρ ⁰ : Ralf Seidl ππ: Ralf Seidl	πK,KK: Francesca Giordano Francesca Giordano	ππº : Hairong Li	Charlotte Hulse	
Interference FF: e ⁺ e ⁻ →(hh)(hh)X	Charged ππ : Ralf Seidl		Charged $\pi\pi$: Anselm Vossen $\pi\pi^{o}$: Anselm Vossen		Charged πK, KK: Nori-aki Kobayashi
Local ₽: Λ(polFF,SSA): Handetness: Jet-jet asy:			Anselm Vossen Anselm Vossen		
KEKFF, Feb 15, 201	4 R.Seid	dl:QCD studies			40