Low-x and forward physics at HERA and the LHC

Workshop on High-energy QCD and nucleon structure 7 March 2014 @ KEK Tokai campus Yuji Yamazaki (Kobe University)

Today's subjects

Low-x: high-density quark matter (multi-)partons interact coherently/incoherently

- 1. Did we learn anything about unpolarised parton densities at the LHC?
- 2. Can we draw consistent picture on forward physics between HERA, Tevatron and the LHC?
 - Total cross sections
 - Diffractive scattering
 - Multi-parton interactions
- 3. Perturbative QCD at the LHC: personal selection
 - Multi-leg simulation, Fat jet
 - α_s at the TeV scale

HERA 1992-2007

- The only e[±]p collider, with the energy comparable to other pp and heavy ion colliders
 - 27.5 GeV $e \times$ 920 GeV p
 - Luminosity upgrade 2001-2003
 - -0.1 fb⁻¹/experiment before upgrade
 - $-0.5 \mathrm{fb}^{-1}$ when finished

The LHC

- Run-I finished
 - at 7/8 TeV with > 25 fb⁻¹

We are here

- $-L \gtrsim 7 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- small amount of data at 900 GeV, 2.76 TeV
- Pb-Pb and p-Pb runs
- Restarting run-II in 2015
 - ~ 13 TeV CMS energy
 - $-L > (1.x) \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Further upgrade in 2019 and 2023 (SLHC) with $L \gtrsim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Parton densities at HERA and the LHC

Parton densities at low-x by *ep* collisions

• Rapid increase in $F_2(x,Q^2) = e^2 x (q(x) + \overline{q}(x))$ towards low-x

$$\begin{aligned} x &\approx p_{parton}/p_{proton} \\ Q^2 &= -(p'_e - p_e)^2 \end{aligned}$$

Quark density decreasing at high-x with Q^2

Improvement in low-x region

- With charm data $F_2^{cc}(x, Q^2)$
 - Charm quarks are mostly produced from gluons

Give constraint also to valence quarks

NC/CC data and high-x pdfs

Improvement in high-x regime

Valence: better constrained, especially the shape – N.B. it does not use fixed target data
Glue larger uncertainty

- 10 vs 14 parameter fit

LHC forward jets

- Jet production is sensitive to parton densities
 - Forward jet: low-x gluons

Combined HERA+LHC fit on PDF

also reducing low-x gluons

Improved description on very forward jets

LHC data constrains gluon density!

Strange quark from W/Z at the LHC

- No valence contribution for strange quark (perhaps)
 - No largely asymmetric configuration
 - Z production through Drell-Yan (annihilation) occurs more in central rapidity if $s, \overline{s}(x)$ are larger

Strange from W+charm production

- Sensitive to strange quarks
- Slight enhancement on c over \bar{c}

 $\begin{array}{c}
\overline{s, d} & W^{+} \\
c \\
c \\
\hline c \\
\hline$

MSTW off (assuming $\bar{s}/\bar{d} \sim 0.5$) CT10 ~ OK NNPDF (collider only) overshoots

Another evidence: strange not suppressed

Top quark cross section and pdf

- Top mass is hard to define (pole, \overline{MS} ...) and measure
- An idea is to fix mass (or α_s) by measuring top cross section ATLAS-CONF-2013-099

Total cross sections Diffraction Other multi-parton phenomena

pp total cross sections

- TOTEM is equipped with double-arm spectrometer (Roman Pot)
- Total cross section is derived from forward elastic scattering through optical theorem

TOTEM collab., EPL, **101** (2013) 21004

Rising slowly:

- No indication of saturation (unitarity)
- No indication of rapid increase (parton-like)

pp elastic cross sections

• Roman pot inserted very close to the beam, Reaching to $|t| = 5 \times 10^{-3} \text{ GeV}^2$

• $t \sim -p_T^2$ of recoil proton (for elastic)

- Clear diffractive dip
 - e^{-B|t|} behaviour:
 - Large B value: very soft scattering
 - `Shrinkage' continues

Hadrons becoming larger with \sqrt{s}

High-energy hadron collisions and the `Pomeron'

- The slow rise is often attributed to the Pomeron trajectory
 - $\alpha(t) = \alpha_0 \alpha' t = 1 + \epsilon \alpha' t$ Often parameterised like: $\alpha_0 \approx 1.08$, $\alpha' \approx 0.25 \text{ GeV}^{-2}$ (Donnachie and Landshoff's universal Pomeron)
 - Elastic cross section

$$\frac{d\sigma_{el}}{dt} \sim \frac{1}{s^2} |A|^2 \sim \left(\frac{s}{s_0}\right)^{2\alpha(t)-2}$$

– Total cross section through optical theorem:

$$\sigma_{tot}^2 \simeq 16\pi \frac{d\sigma_{el}}{dt}\Big|_{t=0} \rightarrow \sigma_{tot}(s) = \sigma_0 \left(\frac{s}{s_0}\right)^{\alpha_0 - 1}$$

Does diffraction also be described by the Pomeron trajectory?

= 2 Im

 \mathbb{P}

Diffraction in *ep* collisions: issues

- Diffraction at HERA:
 - photon dissociates into small mass (X)
 - proton stays intact or proton dissociates into small mass (Y)
- Standard view:
 - Pomeron (ℙ) emitted from proton, which is scattered off by a photon DIS of the Pomeron
- Pomeron or 2-gluon ?
 - If 2 gluons, the exchanged intermediate state is no longer a particle: left and right vertices talks each other (factorisation breaking)

Check if the cross section can be factorised into:

– the Pomeron flux $f_{p/\mathbb{P}}(x_{\mathbb{P}},t)$ and

- the upper part $F_2^{\mathbb{P}}(\beta, Q^2)$

q

• This holds pretty well: cross section shape in x_P is independent of β and Q^2

Pomeron is not quite perturbative 2-gluon

ZEUS

Scaling violation analysis for $g(m{eta}, m{Q}^2)$ in DPDF

- Positive scaling violation in almost all β values
 - Quarks dynamically produced through gluons

000

light

0.8

0.6

- The exchanged object is still gluon-rich

LRG events by detectors at the LHC

Diffractive dijet candidate at 7 TeV

`fragmented proton'

Single diffraction Double diffraction

Double diffraction by TOTEM

- T1 and T2 telescopes to tag proton dissociation system
 T2 to tag the system X/Y
 - T1 veto for rapidity gap

Single diffraction Double diffraction

Somewhere between two models Next: t-dependence

Events with LRG: ATLAS and CMS

- α_0 extracted from cross section dependence with rapidity gap $\Delta \eta$
 - triple-Pomeron formula:

$$\frac{d\sigma}{d\xi_X} \propto s^{-1+\epsilon} \xi_X^{-(1+\epsilon+2\alpha't)}$$

 $\xi_X = \frac{M_X^2}{s}$ (longitudinal momentum fraction of the diffractive exchange)

- $\begin{array}{l} -\Delta\eta \simeq -\ln\xi_X \\ \rightarrow \text{cross section rise by } \sim (\Delta\eta)^\epsilon \end{array}$
- DL universal Poemron: $\alpha(0) = 1.08$

Single diffraction Double diffraction

MBR: Rockfeller saturation model on top of universal Pomeron P8, P6: Schuler-Sjostrand Pomeron with partonic structure

Multi-parton interaction at the LHC

- $\sigma_{parton} > \sigma_{inelastic}$ at high \sqrt{s} and low p_T
 - multiple parton collision in one crossing of nucleon is unavoidable
- ^{*} multi-parton ^p interaction in ep collision
- Observed in Tevatron, many evidences at HERA
- Double-parton interaction cross section is expressed as:

$$\sigma_{DPI}(A,B) = \frac{\sigma_A \cdot \sigma_B}{\sigma_{\text{eff}}}$$

- σ_A , σ_B : cross sections of the two interactions, which often increase with \sqrt{s} because of increasing number of partons
- $\sigma_{\rm eff}$: effective overlapping area of partons from two nucleons in collision.

Smaller the $\sigma_{\rm eff}$, more squeezed the partons, thus higher σ_{DPI}

DPI in W + 2jets

- DPI dijet tend to be back-to-back
- Generic W+2jets: W balances to 2 jets

 $\sigma_{\rm eff}$ rather flat with \sqrt{s} or rising?

Diffraction and rescattering in pp

aka absorption, survival probability ...

Diffractive cross sections in pp can be calculated using factorisation assumption

 $\frac{d\sigma}{d\xi dt} = \sum_{i} \int dx_1 dx_2 d\hat{t} f(\xi, t) f_P(x_1, \mu) f_p(x_2, \mu) \frac{d\hat{\sigma}(\hat{s}, \hat{t})}{d\hat{t}}$

- Rescattering may destroy diffractive condition (large rapidity gap) \Rightarrow suppression on diffraction
- CMS survival probability: $S = 0.08 \pm 0.04$ (NLO rescaled, proton dissociation subtracted)

diffraction destroyed by multi-parton interaction π, ℙ, ℝ ... 000000000 p, n

Selection from Hard pQCD results at the LHC

- Good agreement with NLO and multi-leg MCs for light jets, with some deviation
- b-quark: slight excess, but consistent with simulation

Jet substructure adopted to tag heavy objects

Single W/Z + Etmiss Dark matter search

- Hadronic W/Z decay: Boosted object to reconstruct mass
- Sensitivity to:
 - D5 (vector) spin independent
 - D9 (tensor)
 spin dependent

World best limit!!

α_s at TeV scale

• Renormalisation Group Equation may change the slope if there is new physics in the strong sector

Summary

- LHC starts to constrain PDF
 - With interaction with HERA, where last piece of data are under careful analysis
 - Essential ingredients for discovery
- Investigating "Pomeron-related" phenomena at the LHC:
 - General feature can be understood in the framework of Pomeron exchange
 - Details are to be investigated
- pQCD quite advanced at the LHC
 - New tool: jet substructure
 - Indirect investigation of quark sector in very high- p_T regime by measuring α_s

Low- $x \simeq$ forward

- Protons almost unperturbed after small-*x* partons taken out
- Small-x partons are pretty "backward"
 - Large rapidity gap (LRG)
 between the small-x parton and most forward particle

B-slope of leading baryons at HERA

