Charm baryon spectroscopy at collider experiments

2014 Aug. 8th Workshop at J-PARC Kenkichi Miyabayashi (Nara Women's University)

Introduction: charm baryon

- Thought to be a good place to check if "di-quark" is behaving as a good degree of freedom to form hadrons.
- One of the constituent quark is heavy, correlation between the remained light quarks would become clear.

In collider experiments

Basically, exclusive reconstruction.

- 1. Reconstruct grand state charm baryon (typical example is Λ_c) or strange baryon caused by charm weak decay.
- 2. Add π[±], π⁺π⁻, K⁻π⁺, ... to see the invariant mass spectrum.

Specifying proper final state (decay mode) is essential to go this way.

Reconstructed states with Λ_c

Reconstructed states with Λ_c (cont.)

Select $\Sigma_c(2445)$ π to see $\Lambda_c^+\pi^+\pi^-$

Quantum number of $\Lambda_c(2880)^+$

PRL 98, 262001 (2007)

$$R \equiv \frac{\Gamma(\Sigma_c(2520)\pi)}{\Gamma(\Sigma_c(2455)\pi)}$$
 is small, 0.225±0.062±0.025 \rightarrow P-even.

Reconstructed states with Λ_c (cont.²)

Reconstructed states with Ξ_c^0

 $\Xi_c^{\ 0}$ is reconstructed in pK- π +K- and Λ K- π + as well.

Reconstructed states with Ξ_c^0 (cont.)

PRD89,052003(2014)

 $\Xi_{\rm c}^{\ 0} \, \pi^{+}$ has been visited.

Reconstructed states with Ω_c^0

PLB672,1(2009)

$\Omega_{\rm c}^{0}(2770) \rightarrow \Omega_{\rm c}^{0} \gamma$

PLB672,1(2009)

States seen in AD mode

- \bullet $\Xi_c(3055)^+$ (11.7 σ), $\Xi_c(3080)^+$ (4.7 σ) in ΛD^+
 - Further confirmation of Ξ_c(3055)⁺
- Φ Ξ_c(3055)⁰ (7.6σ), Ξ_c(3080)⁰ (2.6σ) in Λ D⁰
 - First observation of Ξ_c(3055)⁰

Note

- (Grand state charm baryon) + π^{\pm} , $\pi^{+}\pi^{-}$, $K^{-}\pi^{+}$ and γ have been visited by experiments.
- For many states, mass and width were poorly known, Bfactory results have been updating them.
- For more-body decays, piloting input is needed to specify the final state (otherwise just swim in combinatorial background).
- For most of cases, branching fractions are poorly known.
 When we try to get information from the production rate, decay from higher states (feed-down) would become a problem
- Even PDG Br($\Lambda_c \rightarrow pK\pi$), several underlying assumptions. New model-independent approach published from Belle.

Tag $D^{(*)}$ \overline{p} π^+ to get M_{miss}

$$e^+e^-\to c\bar c\to D^{(*)-}\bar p\pi^+\Lambda_c^+$$

PRL113,042002(2014)

Detect only these

Then explicitly reconstruct pK⁻π⁺

PRL113,042002(2014)

PDG was 5.0±1.3%

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$$

Note 2

- Seen in $\Lambda_c^+\pi^+K^-$ case, only $\Xi_c(3080)^+$ appears in $\Sigma_c(2445)^{++}$ K⁻ and $\Sigma_c(2520)^{++}$ K⁻, while $\Xi_c(2980)^+$ and $\Xi_c(3055)^+$ appear only in $\Sigma_c(2445)^{++}$ K⁻.
- In $\Lambda_c \to p K^-\pi^+$, three-body decays, intermediate states can be pK^{*0} , $\Delta^{++}K^-$ and so on.
- Does information of the composition about those intermediate states help to test theoretical model? (Tools to resolve those are in experimentalists' hand, Dalitz plot analysis, etc.)

As for bottom baryons

Results to be given from (mainly) LHCb experiments.

Summary

- In collider experiments, exclusive reconstruction is performed with utilizing 4π spectrometer.
- Thus if enough signal yield is obtained, J^P can be determined from decay products' angular distribution.
- (charm baryon) + π^{\pm} , $\pi^{+}\pi^{-}$, $K^{-}\pi^{+}$ and γ have been visited.
- For more-body decays, piloting input is needed to specify the final state.
- Decay intermediate states composition can be resolved, for example in $\Lambda_c \rightarrow p K^-\pi^+ p K^{*0}$, $\Delta^{++}K^-$ etc. Hope it examine theoretical model/calculation to see if di-quark picture works.
- As for bottom baryons, results to be given from LHC experiments (mostly LHCb).