Charm baryon spectroscopy at collider experiments 2014 Aug. 8th Workshop at J-PARC Kenkichi Miyabayashi (Nara Women's University) #### Introduction: charm baryon - Thought to be a good place to check if "di-quark" is behaving as a good degree of freedom to form hadrons. - One of the constituent quark is heavy, correlation between the remained light quarks would become clear. #### In collider experiments Basically, exclusive reconstruction. - 1. Reconstruct grand state charm baryon (typical example is Λ_c) or strange baryon caused by charm weak decay. - 2. Add π[±], π⁺π⁻, K⁻π⁺, ... to see the invariant mass spectrum. Specifying proper final state (decay mode) is essential to go this way. #### Reconstructed states with Λ_c #### Reconstructed states with Λ_c (cont.) Select $\Sigma_c(2445)$ π to see $\Lambda_c^+\pi^+\pi^-$ ## Quantum number of $\Lambda_c(2880)^+$ PRL 98, 262001 (2007) $$R \equiv \frac{\Gamma(\Sigma_c(2520)\pi)}{\Gamma(\Sigma_c(2455)\pi)}$$ is small, 0.225±0.062±0.025 \rightarrow P-even. # Reconstructed states with Λ_c (cont.²) ### Reconstructed states with Ξ_c^0 $\Xi_c^{\ 0}$ is reconstructed in pK- π +K- and Λ K- π + as well. ## Reconstructed states with Ξ_c^0 (cont.) PRD89,052003(2014) $\Xi_{\rm c}^{\ 0} \, \pi^{+}$ has been visited. ### Reconstructed states with Ω_c^0 PLB672,1(2009) # $\Omega_{\rm c}^{0}(2770) \rightarrow \Omega_{\rm c}^{0} \gamma$ PLB672,1(2009) #### States seen in AD mode - \bullet $\Xi_c(3055)^+$ (11.7 σ), $\Xi_c(3080)^+$ (4.7 σ) in ΛD^+ - Further confirmation of Ξ_c(3055)⁺ - Φ Ξ_c(3055)⁰ (7.6σ), Ξ_c(3080)⁰ (2.6σ) in Λ D⁰ - First observation of Ξ_c(3055)⁰ #### Note - (Grand state charm baryon) + π^{\pm} , $\pi^{+}\pi^{-}$, $K^{-}\pi^{+}$ and γ have been visited by experiments. - For many states, mass and width were poorly known, Bfactory results have been updating them. - For more-body decays, piloting input is needed to specify the final state (otherwise just swim in combinatorial background). - For most of cases, branching fractions are poorly known. When we try to get information from the production rate, decay from higher states (feed-down) would become a problem - Even PDG Br($\Lambda_c \rightarrow pK\pi$), several underlying assumptions. New model-independent approach published from Belle. # Tag $D^{(*)}$ \overline{p} π^+ to get M_{miss} $$e^+e^-\to c\bar c\to D^{(*)-}\bar p\pi^+\Lambda_c^+$$ PRL113,042002(2014) Detect only these #### Then explicitly reconstruct pK⁻π⁺ PRL113,042002(2014) PDG was 5.0±1.3% $$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24^{+0.21}_{-0.27})\%$$ #### Note 2 - Seen in $\Lambda_c^+\pi^+K^-$ case, only $\Xi_c(3080)^+$ appears in $\Sigma_c(2445)^{++}$ K⁻ and $\Sigma_c(2520)^{++}$ K⁻, while $\Xi_c(2980)^+$ and $\Xi_c(3055)^+$ appear only in $\Sigma_c(2445)^{++}$ K⁻. - In $\Lambda_c \to p K^-\pi^+$, three-body decays, intermediate states can be pK^{*0} , $\Delta^{++}K^-$ and so on. - Does information of the composition about those intermediate states help to test theoretical model? (Tools to resolve those are in experimentalists' hand, Dalitz plot analysis, etc.) #### As for bottom baryons Results to be given from (mainly) LHCb experiments. #### Summary - In collider experiments, exclusive reconstruction is performed with utilizing 4π spectrometer. - Thus if enough signal yield is obtained, J^P can be determined from decay products' angular distribution. - (charm baryon) + π^{\pm} , $\pi^{+}\pi^{-}$, $K^{-}\pi^{+}$ and γ have been visited. - For more-body decays, piloting input is needed to specify the final state. - Decay intermediate states composition can be resolved, for example in $\Lambda_c \rightarrow p K^-\pi^+ p K^{*0}$, $\Delta^{++}K^-$ etc. Hope it examine theoretical model/calculation to see if di-quark picture works. - As for bottom baryons, results to be given from LHC experiments (mostly LHCb).