The $\eta' N$ 2body system and the η' -optical potential in nuclear medium based on the $\eta' N$ interaction from a chiral effective model Shuntaro Sakai (Kyoto Univ.) Daisuke Jido (Tokyo Metro. Univ.)

Contents

- Introduction to the η' properties
- The analysis of η' with linear sigma model
 The η'N 2body system
 - The η' -optical potential in nuclear medium
- Summary and future prospects

Introduction

$U_A(1)$ anomaly and η' mass

η' mass in medium

Ex.) Analysis with linear σ model

R.D. Pisarski and F. Wilczek , PRD29(1984)338.

The effect of chiral symmetry breaking on the η' mass

<u>The degeneracy of the pseudoscalar-singlet (η ') and octet mesons (η)</u> <u>in chiral SU(3) symmetric phase(@high T or ρ)</u>

Cohen (1996), Lee and Hatsuda (1996), Jido, Nagahiro, and Hirenzaki (2012)

&1. We used only the axial transformation of SU(3)_L × SU(3)_R (no necessity of the U_A(1) restoration). &2. We cannot transform the singlet to the octet ps-meson in the 2-flavor case.

<u>Chiral symmetry breaking is also responsible</u>

for the generation of the n' mass. 6

The degeneracy of η and η' in chiral SU(3) symmetric phase

The possibility of the η' mass reduction in the nuclear medium

through the partial restoration of chiral symmetry

Related works: The η' properties in medium with chiral model

- NJL, Linear sigma model, Quark Meson Coupling model,...

Bernard, et al.(1988), Hatsuda and Kunihiro(1994), Costa, et al.(2003), Renaghan, et al.(2000), Bass and Thomas(2006), Nagahiro, et al.(2006), S.S and Jido(2013)...

The existence of the *ŋ*'-mesic nuclei

Saito, Tsushima, and Thomas(2007), Nagahiro and HIrenzaki(2005)

(mass reduction in nuclear medium \leftrightarrow attractive optical potential)

$$\left(-\nabla^2 + m_{\eta'}^2 + \Sigma_{\eta'}(\rho)\right)\Phi = E^2\Phi$$

- The in-medium η' self energy

 \times Some experiments are progressing.

The purpose

- Study of the η 'N system
 - Further information or constraints on the η' properties

The important effects in η' :

- Symmetries of QCD $(SU(3)_L \times SU(3)_R, U(1)_A \text{ anomaly})$
- Modeling partial restoration of chiral symmetry
- Nucleon degree of freedom

Study of η' with linear σ model

Lagrangian of linear sigma model

 $\mathcal{L} = \frac{1}{2} \operatorname{tr}(\partial_{\mu} M \partial^{\mu} M^{\dagger}) - \frac{\mu^{2}}{2} \operatorname{tr}(M M^{\dagger}) - \frac{\lambda}{4} \operatorname{tr}\left[(M M^{\dagger})^{2}\right] \\ - \frac{\lambda'}{4} \left[\operatorname{tr}(M M^{\dagger})\right]^{2} + A \operatorname{tr}\chi M^{\dagger} + \sqrt{3}B \det M + \text{h.c.}$ The effect from the U₄(1) anomaly

effect

 $+\bar{N}i\partial N - g\bar{N}\left(\frac{1}{\sqrt{3}}\sigma_0 + \frac{1}{\sqrt{6}}\sigma_8 + i\gamma_5\frac{\vec{\tau}\cdot\vec{\pi}}{\sqrt{2}} + i\gamma_5\frac{1}{\sqrt{3}}\eta_0 + i\gamma_5\frac{1}{\sqrt{6}}\eta_8\right)N$

current quark mass

Contribution from nucleon

$$M = \sum_{a=0}^{8} \frac{\sigma_a \lambda_a}{\sqrt{2}} + i \sum_{a=0}^{8} \frac{\pi_a \lambda_a}{\sqrt{2}} \quad N = \begin{pmatrix} p \\ n \end{pmatrix} \quad \chi = \sqrt{3} \begin{pmatrix} m_u & & \\ & m_d & \\ & & m_s \end{pmatrix} = \begin{pmatrix} m_q & & \\ & m_q & \\ & & m_s \end{pmatrix}$$

(λ_a : Gell-Mann matrix, τ_i : Pauli matrix)

※1.) 6 free parameters are fixed to reproduce

in-vacuum meson properties and 35% reduction of quark condensate @normal nuclear density. π atom: Suzuki (2004)., π-nucleus elastic scattering: Friedman, et al. (2004).

&2.) $\langle \sigma_0 \rangle \neq 0$ when chiral symmetry is broken (spontaneously and explicitly). &3.) $\langle \sigma_8 \rangle \neq 0$ when flavor symmetry is broken (m₀≠m_s).

η' in linear sigma model

η' in linear sigma model

In the linear σ model,

The large mass reduction

Strong coupling with nucleon through σ exchange

Within the mean-field approximation,

Large mass reduction of η' in nuclear medium = Strong attraction of the η' N 2body system

Importance of the complemental study of the η 'N system

Study of the η 'N 2body system

η 'N 2-body system

Scattering equation

Analysis of η 'N with the similar way to the K^{bar}N system

✓ Use of Natural renormalization scheme

T.Hyodo, D.Jido, A.Hosaka, PRC78025203 (2008).

 \rightarrow Analysis focusing on the hadronic state

η 'N 2body interaction

✓ Chiral limit

$$V_{\eta_0 N} = -\frac{6gB}{\sqrt{3}m_{\sigma_0}^2} \quad V_{\eta_0 N \to \eta_8 N} = \frac{6gB}{\sqrt{6}m_{\sigma_8}^2}$$

<u>The properties of $V_{\eta'N}$ </u>

- □ Non-vanishing vertex even in the chiral limit
- Interaction induced by scalar meson exchange
- **\Box** Crucial role of the U_A(1) anomaly

ING bosons (η, π)

$$V_{\pi N} = -\frac{g^2 m_{\pi}}{8m_N^2} [\lambda_a, \lambda_b]$$
 (q²~0, p, p'~m_N, k, k'~m _{π})

✓ <u>Off-chiral limit</u> (Focus on the zero-momentum)

$$V_{\eta_0 N} = -\frac{g}{\sqrt{3}} \frac{\frac{2}{3}\lambda \left\langle \sigma_0 \right\rangle + 2\lambda' \left\langle \sigma_0 \right\rangle + 4B}{m_{\sigma_0}^2} - \frac{g}{\sqrt{6}} \frac{\frac{2}{3}\lambda \left\langle \sigma_8 \right\rangle + 2\lambda' \left\langle \sigma_8 \right\rangle}{m_{\sigma_8}^2} + \frac{g^2}{3m_N}$$

- Comparable attractive potential to the K^{bar}N system

$$\mathbf{K} M_{\rm ps} = \begin{pmatrix} \eta_0/\sqrt{3} + \eta_8/\sqrt{6} & \\ & \eta_0/\sqrt{3} + \eta_8/\sqrt{6} & \\ & & \eta_0/\sqrt{3} - \sqrt{2}\eta_8/\sqrt{3} \end{pmatrix}$$

 $\eta_{0,8}$: SU(3)_V eigen state Physical η , η' : linear comb. of $\eta_{0,8}$ 15

η 'N 2body system

Absolute value of n'N T matrix in Real axis

A pole in the complex energy plane \rightarrow A η 'N quasi-bound state

Pole position:

1885-4.5iMeV (η 'N thr.=1896.7MeV) Binding energy= 11.7MeV Full width= 9MeV

meson-nucleon-bound state coupling

$$|g_{\eta'NN^*}|=2.59, |g_{\eta NN^*}|=0.38, |g_{\pi NN^*}|=0.22$$

Small couplings compared with the $g_{\eta'NN^*}$

η 'N 2body system

Scattering length and effective range

Binding energy	η' N scattering length	η' N effective range
[ועופע]	[1111]	[111]
11.7-4.5i	-1.91+0.33i	0.25-0.009i

%1. The existence of the hadronic bound state (binding energy~1MeV order) →Scattering length is order 1fm : $a_{\eta'N} = \frac{1}{\sqrt{2\mu E_B}}$

※2. Comparison with experimentally suggested values:

$$\begin{split} |\text{Re}a_{\eta'p}| &< 0.8 \text{fm} \quad \text{P. Moskal, et al., PLB482,356(2000).} \\ \begin{bmatrix} \text{Re}(a_{\eta'p}) = 0 \pm 0.43(\text{stat}) \text{fm} \\ \text{Im}(a_{\eta'p}) = 0.37^{+0.02}_{-0.11}(\text{stat})^{+0.38}_{-0.05}(\text{syst}) \text{fm} \\ \text{P. Moskal, et al., PRL,113,062004(2014).} \end{bmatrix} \end{split}$$

 Comparison with these experimental data should be done carefully, because of • the difference of the energy region focusing on • the method to extract the values from the experimental data,...

η' -optical potential

η' -optical potential

η' -optical potential

 \succ Real part of the η' optical potential

$$\begin{array}{c}
\overbrace{\eta'}^{N} + \operatorname{Re}_{\eta'} & \overbrace{\eta,\pi}^{N} \\
\overbrace{\eta'}^{n} & \overbrace{\eta'}^{n} + \operatorname{Re}_{\eta'} & \overbrace{\eta,\pi}^{N} & \overbrace{\eta'}^{n} \\
\end{array}$$

$$\begin{array}{c}
\overbrace{\eta,\pi}^{N} & \overbrace{\eta,\pi}^{N} & \overbrace{\eta'}^{n} \\
\overbrace{\eta,\pi}^{N} & \overbrace{\eta,\pi}^{N} \\
\overbrace{\eta,\pi}^{N} \\$$

✓ Density dependence of η '-optical potential

Summary

- Significant role of $U_A(1)$ anomaly and chiral symmetry breaking for the η' mass and $\eta'N$ interaction
 - Relevance to the η 'N attraction
- The possible η N bound state
 - Binding energy: 11.7-4.5i[MeV]
- The η' -optical potential
 - Real part: -62[MeV]@ ρ = ρ_0

Future prospects

• The calculation of the imaginary part with two-body absorption

Thank you for your attention!