Recent results and future prospects of the K^{bar}NN search @ J-PARC E15

F. Sakuma, RIKEN for the J-PARC E15 collaboration

- Results of the E15 1st physics run
- Future prospects of E15
- Summary

Kaonic Nuclei

Kaonic nucleus is a bound state of nucleus and anti-kaon (K^{bar}NN, K^{bar}NNN, K^{bar}K^{bar}NN, ...)

T.Yamazaki, A.Dote, Y.Akiaishi, PLB587, 167 (2004).

K⁻pp Bound State

K-pp: the simplest Kbar-nuclear state

Calculated K^-pp binding energies B and widths Γ (in MeV).

A.Gal, NPA914(2013)270

	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]
В	16	17-23	9–16	48	50-70	60-95	40-80
Γ	41	40–70	34–46	61	90–110	45-80	40-85

- [7] N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B 712 (2012) 132.
- [8] A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804 (2008) 197;
 A. Doté, T. Hyodo, W. Weise, Phys. Rev. C 79 (2009) 014003.
- [9] Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124 (2010) 533.
- [10] T. Yamazaki, Y. Akaishi, Phys. Lett. B 535 (2002) 70.
- [11] N.V. Shevchenko, A. Gal, J. Mareš, Phys. Rev. Lett. 98 (2007) 082301;
 N.V. Shevchenko, A. Gal, J. Mareš, J. Revai, Phys. Rev. C 76 (2007) 044004.
- [12] Y. Ikeda, T. Sato, Phys. Rev. C 76 (2007) 035203;
 - Y. Ikeda, T. Sato, Phys. Rev. C 79 (2009) 035201.
- [13] S. Wycech, A.M. Green, Phys. Rev. C 79 (2009) 014001.

All theoretical studies predict existence of the K-pp

 \rightarrow However, B.E. and Γ are controversial

Experimental Principle of E15

A search for the simplest kaonic nucleus, K⁻pp, using ³He(*in-flight* K⁻,n) reaction

- two-nucleon absorption
- hyperon decays

CAN be discriminated kinematically

Experimental Setup

E15 1st Stage Physics-Run

- Production run of ~1% of the approved proposal was successfully performed in 2013.
- All detector systems worked well as designed.

	Primary-beam intensity	Secondary-kaon intensity	Duration	Kaons on target (w/ tgt selection)
March, 2013 (Run#47)	14.5 kW (18 Tppp, 6s)	80 k/spill	30 h	1.1 x 10 ⁹
May, 2013 (Run#49c)	24 kW (30 Tppp, 6s)	140 k/spill	88 h	5.3 x 10 ⁹

^{*} production target: Au 50% loss, spill length: 2s, spill duty factor: ~45%, K/pi ratio: ~1/2

^{* ~70%} of beam kaons hit the fiducial volume of ³He target

Formation Channel

Semi-Inclusive ³He(K⁻,n)X

- ✓ **No significant bump structure** $\overset{\circ}{\checkmark}$ 80 in the deeply bound region $\overset{\times}{\triangleright}$ 60
- ✓ Excess below the threshold attributed to 2NA of Λ *n?

Decay Channel

Exclusive 3 He(K^{-} , Λp)n

- ✓ Hint of the excess around the threshold
- ✓ Cannot be from 2NA of Λ^* n (final state = Λ pn)

Formation Channel, Semi-Inclusive ³He(K⁻,n)X

T.Hashimoto et al., arXiv:1408.5637, submitted to PLB

The tail structure is not due to "the detector resolution"

Background Evaluation

 $K^- + "N" \rightarrow \Sigma + \pi$

Spectrum below the Threshold

- No significant bump-structure in the deep-binding region
- Statistically significant excess just below the threshold

Comparison between E15 and Other Results

FINUDA@DADNE

PRL**94**(2005)212303

A(stopped K^- , Λp)

Data

 $\mathsf{BG}_{\Sigma\text{-decay}}$ $\mathrm{BG}_{\mathrm{cell}}$

M(K+p+p)

350

150 Tubes 150 Conuts 100 Conuts 1

Binding E

(Σ+N+π)

DISTO@SATURNE

PRL104(2010)132502

 $p + p \rightarrow (\Lambda + p) + K^+ @ 2.85G$

Comparison between E15 and Other Results

E27@J-PARC

EXA2014 conference

d(π⁺, K⁺) @ 1.7GeV/c

M(K+p+p)

- Bump structure in the deep-binding region reported from other experiments was NOT seen in E15
- Excess near the threshold can be seen only in E15

U.L. of the deeply-Bound K⁻pp

Assumptions

- $K^-pp \rightarrow \Lambda p$ decay mode (isotropic decay)
- K⁻pp shape = Breit-Wigner

U.L. depends on the decay mode

U.L. of the deeply-Bound K⁻pp

- E15(K⁻+³He): (UL) 0.5-5% of QF
- FINUDA(stopped K⁻):
 ~0.1% of stopped K⁻
- DISTO(p+p): larger than Λ^* @ 2.85GeV
- LEPS(γ+d)
 (UL) 1.5-26% of γN→K+π-Y

Upper limits (CS) can be directly compared with QF yield.

Spectrum below the Threshold

- No significant bump-structure in the deep-binding region
- Statistically significant excess just below the threshold

Excess = Elementary Processes?

²o/dΩ/dM

The tail structure is NOT reproduced by well known processes

would be attributed to the imaginary part of the attractive K^{bar}N

→ Multi-NA? K⁻pp?

- Detector acceptance and all known K⁻N interactions are taken in to account:
 - Cross-section [CERN-HERA-83-02]
 - Fermi-motion
 - Angular distribution
- Simple assumptions:
 - $-\sigma_{tot} = 2*\sigma_{K-p} + \sigma_{K-n} (~150 \text{mb})^7$

Excess = $\pi\Sigma N$, $\pi\Sigma NN$, etc?

Each process is simulated with unreasonably large CS of 100mb

contributions in the binding region are negligible

Excess = $\Lambda^* N$, etc?

- $\Lambda N/\Sigma N$ branches are negligibly small (consistent with KEK-PS E548)
- $\Lambda(1405)$ n branch seems to reproduce the excess
 - $\Lambda(1405)$ shape is "simple BW with PDG values"
 - need rather large CS of ~5mb/sr
- For further study, exclusive measurement of $\pi\Sigma N$ is needed.

Excess = Loosely-Bound K⁻pp?

- The excess is assumed to be fully attributed to the bound K-pp state
- $d\sigma/d\Omega(\theta_{lab}=0^{\circ})$ of the excess is ~ mb/sr (Excess/QF < ~10%)

Comparison between E15 and Calc.

- CS is roughly consistent with KH
- Loosely-bound K-pp state ???

Decay Channel, Exclusive ³He(K⁻, ∧p)n

Exclusive 3 He(K^{-} , Λp)n events

Dalitz plot

Dalitz plot

K-induced vs π -induced

- [1] D. Gotta, et al., PRC51. 496 (1995)
- [2] P. Weber et al., NPA501 765 (1989)
- [3] G. Backenstoss et al., PRL55. 2782 (1985)

- π^- stopped [1]
 - 2nucleon absorption &FSI (50%/ π stopped) are clearly seen
 - 3nucleon absorption <3% $/\pi$ stopped
- π^- in-flight [2],[3]
 - 2nucleon absorption 0.85 \pm 0.17mb (266 MeV/c)
 - 3nucleon absorption 3.7 \pm 0.6 mb(220 MeV/c)

Ap Invariant Mass

3He(K-,Lp) ∧p I.M. [GeV/c²]

FS = Λ (Σ^0) pn \rightarrow cannot be from 2NA of Λ^* n

Excess around the threshold?

Further study is ongoing, such as contribution from 2NA+2step.

Comparison with Phase-Space

- total CS: ~200 μb (~ 0.1% of total cross section of K-3He)
 - when phase-space distributions are assumed
- Excess around the threshold?

Comparison with Phase-Space

data cannot be reproduced by the phase-space?

Formation + Decay Channel, Kinematically Complete ³He(K⁻, ∧pn)

Kinematically-complete measurement of 3 He(K^{-} , Λ pn)

- Minimum momentum transfer of the ³He(K⁻,n) reaction
 - → would enhance the S=-1 di-baryon production
- More beam time is required

Future Prospects of E15

E15 2nd stage (approved)

May, 2013 (Run#49c)

24 kW (30 Tppp, 6s)

140 k/spill

88 h

5.1 x 10⁹

E15^{2nd}: 50x10⁹ kaons on target in 2015

The goal of the E15^{2nd}

- 1. derive $\pi\Sigma N$ decay information in ${}^{3}He(K^{-},n)X$ reaction
- 2. confirm the spectral shape of the Λp invariant-mass by the exclusive measurement of ${}^{3}He(K^{-},\Lambda p)n$
- 3. explore the neutron spectrum at $\theta_{lab}=0^{\circ}$ with the kinematically complete measurement of 3 He(K^{-} , Λ pn)

Formation Channel

Semi-Inclusive ³He(K⁻,n)X

- ✓ No significant bump structure $\stackrel{\text{if}}{\checkmark}$ 80 in the deeply bound region $\overset{\times}{\triangleright}$ 60
- ✓ Excess below the threshold attributed to 2NA of Λ *n?

Decay Channel

Exclusive 3 He(K^{-} , Λp)n

- ✓ Hint of the excess around the threshold
- ✓ Cannot be from 2NA of Λ^* n (final state = Λ pn)

The J-PARC E15 Collaboration

- S. Ajimura^a, G. Beer^b, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomotoⁱ, D. Faso^{g,h}, H. Fujioka^j, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^k, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoueⁱ, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, T. Ishiwatari^f, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle^p, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j, *}, H. Noumi^a, H. Ohnishiⁿ, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, M. Poli Lener^d, A. Romero Vidal^d, Y. Sada^j, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Satoⁿ, A. Scordo^d, M. Sekimoto^o, H. Shi^k, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^c, H. Tatsuno^d, M. Tokuda^m, D. Tomonoⁿ, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,s}, E. Widmann^f, B. K. Weunschek^f, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f
- (a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan •
- (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada ▶
- (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea 🧀
- (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy ▮▮
- (e) National Institute of Physics and Nuclear Engineering IFIN HH, Romania
- (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria
- (g) INFN Sezione di Torino, Torino, Italy
- (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy
- (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan •
- (i) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan •
- (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan •
- (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572–8530, Japan
- (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan ●
- (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan •
- (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan •
- (p) Technische Universität München, D-85748, Garching, Germany
- (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan •
- (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan •
- (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany
- (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139−706, South Korea 💌
- (*) Spokesperson
- (\$) Co-Spokesperson