SNP Meeting @ J-PARC August 3, 2015

Current theoretical topics on K⁻pp quasi-bound state

Yoshinori AKAISHI and Toshimitsu YAMAZAKI

DAΦNE Conf. (1999), HYP Conf. (2000); rejected from Proc. Y. Akaishi & T. Yamazaki, Phys. Rev. C <u>65</u> (2002) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B <u>535</u> (2002) 70

J-PARC E31 : D (K⁻, n)

K^{bar}N scattering amplitude

$\Sigma\pi$ invariant mass from stopped K⁻ on ⁴He

J. Esmaili, Y. Akaishi & T. Yamazaki, Phys. Lett. B686 (2010) 23

$$M = 1405.5^{+1.4}_{-1.0} \text{ MeV}/c^2$$
 and $\Gamma = 23.6^{+4}_{-3} \text{ MeV}$

Interpretation of the $\Lambda(1405)$ shift in HADES data

A(1405) 1/2-

 $I(J^{P}) = 0(\frac{1}{2})$ Status: ****

2015

/(1405) MASS

	PROD		EXPER	DOCUMENT ID		TECN	COMMENT		
1405.1+ 1.3 OUR AVERAGE									
	1405	+11 - 9		HASSANVAND	13	SPEC	$pp \rightarrow p\Lambda(1405)K^+$		
	1405	+ 1.4 - 1.0		ESMAILI	10	RVUE	${}^{4}\text{He}\; K^{-} ightarrow \; \Sigma^{\pm} \pi^{\mp} X$ at rest		
	1406.	5± 4.0		¹ DALITZ	91		M-matrix fit		
	• • • W	$\frac{2.5 \pm 4.0}{\text{We do not use the following data for averages, fits, limits, etc. • • •}{1 \pm 1 700 \frac{1}{\text{HEMINGWAY} 85 \text{HBC} K^- p 4.2 \text{ GeV}/c}$							
	1391	± 1	700	¹ HEMINGWAY	85	HBC	K ⁻ p 4.2 GeV/c		
,	~ 1405		400	² THOMAS	73	HBC	π ⁻ p 1.69 GeV/c		
	1405		120	BARBARO	68B	DBC	K ⁻ d 2.1–2.7 GeV/c		
	1400	± 5	67	BIRMINGHAM	66	HBC	К р 3.5 GeV/с		
	1382	± 8		ENGLER	65	HDBC	$\pi^{-}p, \pi^{+}d$ 1.68 GeV/c		
	1400	± 24		MUSGRAVE	65	HBC	<u>₽</u> p 3-4 GeV/c		
	1410			ALEXANDER	62	HBC	π ⁻ p 2.1 GeV/c		
	1405			ALSTON	62	HBC	K ⁻ p 1.2–0.5 GeV/c		
	1405			ALSTON	61B	HBC	K-p 1.15 GeV/c		

A(1405) WIDTH

PRODUCTIO	PRODUCTION EXPERIMENTS									
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT						
50.5± 2.0 OU	AVERAGE									
62 ±10		HASSANVAND 13	SPEC	$pp \rightarrow p\Lambda(1405)K^+$						
50 ± 2		¹ DALITZ 91		M-matrix fit						
				1						

We do not use the following data for averages, fits, limits, etc.

D(K⁻, n) missing mass spectrum calculation

D(K⁻, n) missing mass spectrum

react-Kpi/d_Kn_Ls1.f

<u>Missing-mass spectrum of</u> $D(K^{-},n)\Sigma^{\pm}\pi^{\mp}$ $\theta_{n} = 0^{\circ}$

Missing and invariant mass spectra

$\Sigma\pi$ invariant-mass spectrum

$\Sigma \pi$ invariant-mass spectrum Deuteron-size dependence

Shevchenko's interaction

Phys. Rev. C. <u>85</u> (2012) 034001

<u>Missing-mass spectrum of D(K⁻,n)</u> $\Sigma^{\pm}\pi^{\mp}$ $\theta_n = 0^{\circ}$

<u>Missing-mass spectrum of</u> $D(K^{-},n)\Sigma^{\pm}\pi^{\mp}$ $\theta_{n} = 0^{\circ}$

<u>Missing-mass spectrum of</u> $D(K^{-},n)\Sigma^{\pm}\pi^{\mp}$ $\theta_{n} = 0^{\circ}$

J-PARC **E15**: ³He (K⁻, n)

Semi-inclusive neutron spectrum

T. Hashimoto et al., Prog. Theor. Exp. Phys. 2015, 061D01

KH : T. Koike & T. Harada, Phys. Lett. B <u>652</u> (2007) 262

Phys. Rev. C <u>80</u> (2009) 055208

Phase space suppression factor (Mares-Friedman-Gal) for Im V^{opt}(E)

YJNH: J. Yamagata-Sekihara, D. Jido, H. Nagahiro & S. Hirenzaki, Phys. Rev. C <u>80</u> (2009) 045204

Variational wave function of K-pp

ATMS

Amalgamation of Two-body correlations into Multiple Scattering process

$$\Psi = \left[\left\{ \frac{f^{I=0}(r_{12})\hat{P}_{12}^{I=0} + f^{I=1}(r_{12})\hat{P}_{12}^{I=1}}{N} f_{NN}(r_{23})f(r_{31}) + f(r_{12})f_{NN}(r_{23}) \left\{ \frac{f^{I=0}(r_{31})\hat{P}_{31}^{I=0} + f^{I=1}(r_{31})\hat{P}_{31}^{I=1}}{N} \right\} \right] | T = 1/2 \rangle$$

$$\hat{P}_{12}^{I=0} = \frac{1 - \vec{\tau}_{K}\vec{\tau}_{N}}{4}, \quad \hat{P}_{12}^{I=1} = \frac{3 + \vec{\tau}_{K}\vec{\tau}_{N}}{4}$$

$$| T = 1/2 \rangle = \sqrt{\frac{3}{4}} \left[\left(\overline{K}_{1}N_{2} \right)^{0,0}p_{3} \right] + \sqrt{\frac{1}{4}} \left[-\sqrt{\frac{1}{3}} \left(\overline{K}_{1}N_{2} \right)^{1,0}p_{3} + \sqrt{\frac{2}{3}} \left(\overline{K}_{1}N_{2} \right)^{1,1}n_{3} \right]$$

$$A^{*p}$$

Euler-Lagrange equation

 $\delta_{f}\left\{\left\langle \boldsymbol{\Psi}\left|\boldsymbol{H}\right|\boldsymbol{\Psi}\right\rangle-\lambda\left\langle \boldsymbol{\Psi}\left|\boldsymbol{\Psi}\right\rangle\right\}=0$

$$v_{\rm KN}^{T=0}(r) = \{-595 - i83\}_{\rm MeV} \exp\{-(r/0.66_{\rm fm})^2\}$$
$$v_{\rm KN}^{T=1}(r) = \{-175 - i105\}_{\rm MeV} \exp\{-(r/0.66_{\rm fm})^2\}$$
$$v_{\rm NN}(r) = 2000_{\rm MeV} \exp\{-(r/0.447_{\rm fm})^2\} - 270_{\rm MeV} \exp\{-(r/0.942_{\rm fm})^2\} - 5_{\rm MeV} \exp\{-(r/2.5_{\rm fm})^2\}$$

Density distributions of K^{bar}-N

T. Yamazaki and Y. Akaishi, Phys. Rev. C 76 (2007) 045201

Adiabatic p-p potential in K-pp

Λ*N system with meson exchange
A. Arai, M. Oka & S. Yasui,
Prog. Theor. Phys. <u>119</u> (2008) 103

T. Yamazaki & Y. Akaishi, Proc. Japan Academy, B <u>83</u> (2007) 144

K-pp quasi-bound state

<u>Missing mass spectrum of Λ^* -p system</u>

Semi-inclusive neutron spectrum

Semi-inclusive neutron spectrum

Pseudo-QF Λ* and K⁻pp

J-PARC **E27** : **D** (π⁺, **K**⁺)

Inclusive spectrum

K-pp quasi-bound state

p-p distance = 2.0 fm

<u>Angular-mom. decomposition of the Λ^* -p pair</u>

Concluding remarks

The $\Lambda^* = \Lambda(1405)$ plays an essential role in forming "anti-Kaonic Nuclear Clusters", the simplest one of which is $K^-pp = (K^-p)-p = \Lambda^*-p.$

The Λ^* -p structure interacting with "super-strong force" due to K^{bar} migration provides a possible explanation of recent J-PARC data on K⁻pp.

Strangelet

Thank you very much!