J-PARCにおけるK中間子原子核の実験的研究 ~J-PARC E27実験と今後~

2015/08/03 Yudai Ichikawa JAEA(ASRC) ストレンジネス・ハドロン合同研究会

Contents

- Introduction
 - K⁻pp bound state
- J-PARC E27 experiment
 - $d(\pi^+, K^+)$ reaction
 - Experimental set up (K1.8 beam line + SKS + RCA)
- Analysis result & Discussion
 - Inclusive analysis, Coincidence analysis
- Future plan
 - K⁻pp study in the d(π^+ , K⁺) reaction with Hyp-TPC
 - C(K⁻, p) spectrum to study the K^{bar}-nucleus interaction
 - By-product measuring in E05 pilot experiment
- Conclusion

K⁻pp bound state

- Total charge:+1, $I = \frac{1}{2}$, $J^{P} = 0^{-}$.
- The bound state was expected due to the KN strong interaction, which is strong attractive in I = 0.
- It has a rich information such as the K
 K
 N strong interaction in sub-threshold region and behavior of Λ(1405) in many body system.
- It makes high density (?)

Past experiments for the K⁻pp

T. Yamazaki et al., PRL 104, 132502 (2010).

- FINUDA experiment M. Agnello et al., PRL 94, 212303 (2005).
 - Stopped K⁻ absorption on 6,7 Li and 12 C.
 - Invariant mass of back-to-back Λp pairs.
 - BE: 115 ⁺⁶₋₅(stat.)⁺³₋₄ (syst.)MeV, Γ: 67 ⁺¹⁴₋₁₁(stat.)⁺²₋₃ (syst.)MeV
- **DISTO** experiment
 - − pp→K⁺Ap reaction at $T_p=2.85$ GeV.
 - K⁺ missing mass and Λp invariant mass.
 - BE: 103 ±3(stat.) ±5(syst.)MeV, Γ: 118 ±8(stat.) ±10(syst.)MeV
- **OBELIX** experiment
 - -p annihilation reaction on ⁴He.
 - (pp π^{-}) invariant mass.
 - BE: 151.0 ±3.2(stat.) ±1.2(syst.)MeV, Γ: < 33.9 ±6.2 MeV

Comparison BE and Γ of the K⁻pp

- Theoretical values of BE and Γ strongly depend on the KN interaction and calculation method.
- Theoretical values can't reproduce the experimental ones.
- Experimental values are not consistent with each other.

Requirement of the new experiment

• Target

- It is better to use lighter target to reduce FSI.

- Reaction
 - We should know the reaction mechanism.
 - Background reaction should be controlled.
- Measurement
 - Exclusive or semi-exclusive measurement is important for the sensitivity of the K⁻pp.

J-PARC E27 experiment

$d(\pi^+, K^+)$ reaction

- K⁻pp is expected to be produced as a $\Lambda(1405)$ doorway.
- Main background is quasi-free hyperon (Λ , $\Sigma^{+/0}$) and hyperon resonance (Λ (1405), Σ (1385)^{+/0}) production.
 - Elementary cross sections were measured. (bubble chamber)

Λ(1405) elementary cross section

• $\pi^- p \rightarrow K^0 \Lambda(1405)$ reaction was measured by using hydrogen bubble chamber at 1.69 GeV/c. ($\pi^+ n \rightarrow K^+ \Lambda(1405)$ cross section should be same assuming the isospin symmetry. We know the elementary cross section of $\Lambda(1405)$.)

Experimental setup

- $[d(\pi^+, K^+) \text{ reaction at } p_{\pi} = 1.69 \text{ GeV}/c]$
- K1.8 beam line spectrometer
 - 1.69 GeV/c π^+ beam
 - $\Delta p/p \sim 2 \times 10^{-3}$
- SKS spectrometer
 - 0.8 1.3 GeV/c for $K^{\scriptscriptstyle +}$
 - $-\Delta p/p \sim 2 \times 10^{-3}$
 - ΔΩ ~ 100 msr
- Target
 - Liquid deuterium

Simulated inclusive missing-mass spectrum

- There are many quasi-free Y^(*) productions (background).
 - Estimated using the elementary cross sections of the $\pi^+p \rightarrow K^+X$ and $\pi^-p \rightarrow K^0X$ (for $\pi^+n \rightarrow K^+X$) reactions with deuteron wave-function. (Bonn potential)

K⁻pp signal will be hidden by quasi-free processes at inclusive spectrum.

Range counter array (RCA) for the coincidence measurement

- RCA is installed to measure the proton from the K⁻pp. - K⁻pp $\rightarrow \Lambda p \rightarrow p\pi^-p$; K⁻pp $\rightarrow \Sigma^0 p \rightarrow p\pi^-\gamma p$; K⁻pp $\rightarrow Yp\pi \rightarrow p\pi p\pi + (etc.)$
- We suppress the QF background by tagging a proton.
 Seg2 and 5 are free from QF background.
- More strongly suppress by tagging two protons.

Requirement of the new experiment

- Target
 - It is better to use lighter target to reduce FSI.
 - **E27** \Rightarrow We use the liquid deuterium target.
- Reaction
 - We should know the reaction mechanism.
 - E27 \Rightarrow The K⁻pp is expected to be produced as a $\Lambda(1405)$ doorway.
 - Background reaction should be controlled.
 - E27 ⇒ The main BG is quasi-free hyperon (resonance) productions.
- Measurement
 - Exclusive or semi-exclusive measurement is important for the sensitivity of K⁻pp.

 \Rightarrow We carried out the coincidence experiment with RCA.

$d(\pi^+, K^+)$ at 1.69 GeV/c (Inclusive spectrum)

Y* peak; data = 2400.6 ± 0.5(stat.) ± 0.6(syst.) MeV/c² sim = 2433.0 $^{+2.8}_{-1.6}$ (syst.) MeV/c² `shift" = -32.4 ± 0.5(stat.) $^{+2.9}_{-1.7}$ (syst.) MeV/c²

ΣN cusp (Inclusive spectrum)

- A cusp at ΣN threshold is prominent in the forward angle.
 - $-M_0 = 2130.5 \pm 0.4$ (stat.) ± 0.9 (syst.) [MeV/ c^2]
 - $-\Gamma = 5.3^{+1.4}_{-1.2}$ (stat.)^{+0.6}_{-0.3} (syst.) [MeV]
 - $d\sigma/d\Omega = 10.7 \pm 1.7 \ \mu b/sr$

H. Machner et al., NPA 901, 65 (2013).

Previous measurement (ΣN cusp)

The ΣN cusp structure was observed in the d(K⁻, π⁻), d(π⁺, K⁺) and p(p, K⁺) reaction.
 In the d(K⁻, π⁻) and d(π⁺, K⁺) reaction

Further detailed theoretical studies including the present data would reveal the information on the ΣN - ΛN coupling strength and pole position.

- There was no experiment to observe the ΣN cusp in the inclusive spectrum in the d(K⁻, π⁻) and d(π⁺, K⁺) reactions.
 - We can directly compare the inclusive spectrum with the theoretical spectrum.
 - Our MM resolution (3.2 MeV) is better than previous measurement.

``K⁻pp''-like structure(coincidence)

- Broad enhancement ~2.28 GeV/c² has been observed in the Σ⁰p spectrum.
 - Mass: 2275 $^{+17}_{-18}$ (stat.) $^{+21}_{-30}$ (syst.) MeV/ c^2 (BE: 95 $^{+18}_{-17}$ (stat.) $^{+30}_{-21}$ (syst.) MeV)
 - Width: $162 + \frac{87}{-45}$ (stat.) $+ \frac{66}{-78}$ (syst.) MeV
 - $d\sigma/d\Omega_{K^-pp"\to\Sigma^0 p} = 3.0 \pm 0.3 \text{ (stat.) }^{+0.7}_{-1.1} \text{ (syst.) } \mu \text{b/sr}$
 - $\Gamma_{\Lambda p}/\Gamma_{\Sigma^0 p} = 0.92 \stackrel{+0.16}{_{-0.14}} (\text{stat.}) \stackrel{+0.60}{_{-0.42}} (\text{syst.})$. [Theoretical value: ~1.2]

<1 proton coincidence probability>

Discussion on the ``K⁻pp''-like structure 1

 Obtained mass (BE ~ 100 MeV) and broad width are not inconsistent with the FINUDA and DISTO values.

Discussion on the ``K⁻pp''-like structure 2

- Sticking probability of the $\Lambda(1405)$ (Elementary: 36.9 μ b/sr)
 - − $(d\sigma/dΩ_{K^{-}pp^{"}\rightarrow\Sigma^{0}p})/(d\sigma/dΩ_{\Lambda(1405)})$ = 8.2 %
 - $(d\sigma/d\Omega_{K^{-}pp^{\prime\prime}\rightarrow\Lambda p})/(d\sigma/d\Omega_{\Lambda(1405)}) = 6.0 \%$
 - $(d\sigma/d\Omega_{K-pp''})/(d\sigma/d\Omega_{\Lambda(1405)}) \gtrsim 14.2\% \quad \text{(for the } Y^* : \gtrsim 3.1\%\text{)}$
 - Theoretical value is about 1%.

Incorrect assumption of the Λ(1405) doorway (?) and/or the other possibilities (?)

20

Future plan

1. To confirm the "K-pp"-like structure

2. To study the \overline{K} -A interaction for the kaonic nuclei search.

To confirm the "K-pp"-like structure

- Further experiment is planed by using **Hyp-TPC** + KURAMA Spectrometer and same reaction (d(π^+ , K⁺) reaction).
 - E27 experiment = RCA + SKS spectrometer
 - RCA \rightarrow Hyp-TPC(Improve to the large acceptance!! (About 4 times larger)!!)
 - − SKS → KURAMA (Improve to the large acceptance (About 2 times larger!!)
 - In the further experiment, we carried out the perfect experiment to detect all particles in high statistic and determine the spin and parity of the K⁻pp-like structure!!
 - We are going to search further kaonic nucleus by using this detector system with ³He(π⁺,K⁺)K⁻ppp, d(K⁻,K⁰)K⁻K⁻pp, ³He(K⁻, K⁺) K⁻K⁻ppn reactions.

C(K⁻, p) spectrum to study K^{bar}-A interaction

- It is not still conclusive whether K^{bar}-nucleus potential is deep or shallow.
 - − Chiral based study:
 Re(V₀) ≤ -60 MeV (Shallow)
 - Phenomenological study (DD etc.) Re(V₀) \sim -200 MeV (Deep)
- Experimental data
 - Kaonic atom
 - Production rate of Λ hypernuclei
 (Stopped K⁻ reaction: FINUDA).
 - K⁻/K⁺ ratio of the heavy ion collision (Kaos).
 - − C(K⁻,N) spectrum (KEK E548).

KEK E548 [C(K⁻, N) spectrum]

T. Kishimoto et al., PTP **118**, 1 (2007)

V_{opt} was studied by comparing the DWIA calculation.

- C(K⁻, n): V_{opt} = (-190, -40) MeV
- C(K⁻, p): V_{opt} = (-160, -50) MeV

Discussion about KEK E548

- V. K. Magas *et al.*, pointed out a serious drawback in this experimental setup.
 - In E548, at lest one charged particle detected in their decay counter was required. (semi-inclusive spectrum)
- We plan to take the ¹²C(K⁻, p) spectrum as by-product of E05 pilot run (next Autumn ??).

C(K⁻, p) study in the E05 pilot run

- Goal of this measurement
 - Determine the K^{bar}A optical potential from QF inclusive spectrum.
 - Search the Kaonic nuclei $({}^{11}_{K}B)$.
 - If background is small and width of ${}^{11}_{K}B$ is not so broad, we can see the signal.

We can take this data with E05 setup at the same time.

Preliminary result of the trigger study data

We took trigger study data (K⁻ beam at 1.8 GeV/*c* with CH₂ target) in April. Data condition: 190k/spill K-beam, 10 minutes data. We can see clear K⁻p \rightarrow K⁻p (Elastic) peak.

In Autumn beam time, we will be able to get ~4000 times more statistics.

Conclusion

E27

- The K⁻pp bound state are not well explored, yet. We have searched for the K⁻ pp bound state using the d(π⁺, K⁺) reaction at 1.69 GeV/c.
- We have measured the inclusive missing-mass spectrum at 1.69 GeV/c in high statistic and energy resolution for the first time.
- The overall structure is well reproduced with a simple quasi-free picture except for two peculiar deviations.
 - Y^* region peak shift / ΣN cusp.
- We have observed a mass distribution of the ``K⁻pp''-like structure in the π +d \rightarrow K⁺``K⁻pp'', ``K⁻pp'' \rightarrow Σ^{0} p mode in two-proton coincidence.
 - Mass: $2275 {}^{+17}_{-18}$ (stat.) ${}^{+21}_{-30}$ (syst.) MeV/ c^2 (BE: $95 {}^{+18}_{-17}$ (stat.) ${}^{+30}_{-21}$ (syst.) MeV)
 - Width: $162 {+87 \atop -45}$ (stat.) ${+66 \atop -78}$ (syst.) MeV

Future plan

- K⁻pp study by using d(π^+ , K⁺) reaction with KURAMA + Hyp-TPC. (J^P?)
- C(K⁻, p) spectrum to study the K^{bar}-nucleus interaction as a by-product measurement of E05 pilot experiment.