Faddeev方程式による Λ(1405)共鳴生成反応の研究

Shota Ohnishi

(Hokkaido Univ.)

in collaboration with Yoichi Ikeda (RIKEN) Tetsuo Hyodo (YITP, Kyoto Univ.) Emiko Hiyama (RIKEN) Wolfram Weise (ECT*/TUM)

K^{bar}N interaction

In order to understand the structure of Λ (1405),

precise determination of $K^{bar}N-\pi\Sigma$ (I=0) interaction is necessary.

strange dibaryons $\bar{K}NN - \pi YN \ (Y = \Lambda, \Sigma)$

theoretical investigations:

$ar{K}N$ interactions				Phenor	I		Chiral	Chiral SU(3)			
	Variational			Akaishi, Yamazaki[1] Wycech, Green[5]				Doté, H Barnec	Doté, Hyodo, Weise[4] Barnea, Gal, Liverts[7]		
	Faddeev eqs.			Shevchenko, Gal , Mares[2]				Ikeda, Ikeda,	Ikeda, Sato[3] Ikeda, Kamano, Sato[6]		
[1		[1]		[2]	[3]	[4]	[5]	[6]	[7]		
]	B[MeV]	48	50-70		45-80	17-23	40-80	9-16	16	Blue; E-dep.	
Γ[MeV]		61	l 90-110		45-75	40-70	40-85	34-46	41	DIACK, E-IIIUEP	
[4] Alexield Verse and DDC CE 200005 (2000) [4] Dote Hyodo and Weise									A 197 (2)	nn8)	

Akaishi, Yamazaki, PRC 65, 044005 (2002).
 Shevchenko, Gal, Mares, PRL. 98, 082301 (2007).

[3] Ikeda, Sato, PRC **76**, 035203 (2007).

[4] Dote, Hyodo and Weise, NPA 804, 197 (2008).
[5] Wycech and A. M. Green, PRC 79, 014001 (2009).
[6] Ikeda, Kamano, Sato, PTP 124, 533 (2010).
[7] Barnea, Gal, Liverts, PLB 712, 132(2012).

Signature of strange dibaryons

Ons Ohnishi, Ikeda, Kamano, Sato, PRC88, 025204(2013).

K^{bar}N interaction

In order to understand the structure of $\Lambda(1405)$,

precise determination of $K^{bar}N-\pi\Sigma$ (I=0) interaction is necessary.

J-PARC E31 experiment

http://j-parc.jp/researcher/Hadron/en/pac_0907/pdf/Noumi.pdf

- ✓ Λ (1405) production via the (*K*⁻,*n*) reaction on deuteron target.
- ✓ We can access below the *K*^{bar}*N* threshold.
- \checkmark Λ (1405) in K^{bar}N channel Jido, Oset, Sekihara, EPJA42, 257(2009).

- detect forward neutron
- Missing mass distribution for $\pi^+\Sigma^-/\pi^0\Sigma^0/\pi^-\Sigma^+$

Strategy of this work

- Study the cross section for J-PARC E31 with K^{bar}NN-πYN Faddeev (AGS) approach based on chiral SU(3) dynamics
 - Full three-body calculation for K^{bar}NN-πYN systems with relativistic kinematics and higher partial waves for 1GeV incident momentum

Two-step: Jido, Oset, Sekihara, EPJA42, 257(2009). Miyagawa, Haidenbauer, PRC85,065201(2012). Yamagata-Sekihara, Sekihara, Jido, PTEP043D02(2013). See also, Revai, Few Body Syst. 54 (2013). (Faddeev, s-wave & w/o πΛN calc.):

• investigate how the signal of $\Lambda(1405)$ resonance appears on $\pi\Sigma$ mass spectrum

Meson-baryon potential based on chiral SU(3)

- NG boson associated with spontaneous breaking of chiral SU(3) symmetry
- Leading order of chiral perturbation theory: Weinberg-Tomozawa (WT) term

$$\mathscr{L}_{I} = \frac{\iota}{8F_{\pi}^{2}} \operatorname{tr}[\bar{B}\gamma_{\mu}[[\phi,\partial^{\mu}\phi],B]]$$

φ: PS meson fields, *B*: baryon fields

Derive the potentials by matching with WT amplitude

"energy-dependent" potentials $V_{\alpha\beta}(E) = \frac{C_{\alpha\beta}}{2F_{\pi}^{2}}(2E - M_{\alpha} - M_{\beta})$ E; two body scattering energy $C_{\alpha\beta}$; determined by flavor SU(3) structure "energy-independent" potentials $V_{\alpha\beta} = \frac{C_{\alpha\beta}}{2F_{\pi}^{2}}(m_{\alpha} + m_{\beta})$ Energy is fixed at threshold M; baryon mass M; meson mass

We introduce phenomenological dipole form factor to regularize loop integrals

$$V_{\alpha\beta} \to V_{\alpha\beta} \left(\frac{\Lambda_{\alpha}^2}{q_{\alpha}^2 + \Lambda_{\alpha}^2}\right)^2 \left(\frac{\Lambda_{\beta}^2}{q_{\beta}^2 + \Lambda_{\beta}^2}\right)^2$$

Cutoff parameters Λ are determined to reproduce the $K^{-}p$ cross section

cutoff (model parameters)

We determine the cutoff parameters to reproduce K⁻p cross sections.

K^{bar}N amplitude and scattering length (output)

- SIDDHARTA ٠
 - $a_{K^-p} = -0.70 + i0.89 \text{fm}$ xSU(3) NLO

- E-dep. $a_{K^-p} = -0.72 + i0.77 \text{fm}$
- E-indep. $a_{K^-p} = -0.54 + i0.46 \text{fm}$

Coupled channel equation for $\bar{K}NN - \pi YN$
 $(Y = \Lambda, \Sigma)$ Faddeev eq. $T_i(W) = t_i(W - E_i) + \sum_{j \neq i} t_i(W - E_i)G_0(W)T_j(W)$ Separable 2-body Interaction; $V(\mathbf{q}', \mathbf{q}) = \lambda g(\mathbf{q}')g(\mathbf{q})$

Alt-Grassberger-Sandhas(AGS) eq. : Xij ; quasi two-body amplitude

$$X_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W) = (1 - \delta_{i,j}) Z_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W) + \sum_{n \neq i} \int d\mathbf{p}_n Z_{i,n}(\mathbf{p}_i, \mathbf{p}_n, W) \tau_n(W - E_n) X_{n,j}(\mathbf{p}_n, \mathbf{p}_j, W)$$

$$Z_{i,j}(p_i, p_j, W) = 2\pi \int_{-1}^{1} d(\hat{\mathbf{p}}_i \cdot \hat{\mathbf{p}}_j) \frac{g(q_i)g(q_j)}{W - E_i(p_i) - E_j(p_j) - E_k(\mathbf{p}_i + \mathbf{p}_j)}$$
$$t_i(\mathbf{q}', \mathbf{q}, W - E_i) = g(\mathbf{q}')\tau(W - E_i)g(\mathbf{q})$$

K⁻*d* -> $\pi \Sigma n$ reaction $\bar{K}NN - \pi \Sigma N - \pi \Lambda N$

Alt-Grassberger-Sandhas(AGS) eq. : *Xij*; quasi two-body amplitude $X_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W) = (1 - \delta_{i,j})Z_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W)$ $+ \sum_{n \neq i} \int d\mathbf{p}_n Z_{i,n}(\mathbf{p}_i, \mathbf{p}_n, W) \tau_n(W - E_n) X_{n,j}(\mathbf{p}_n, \mathbf{p}_j, W)$

- For E-dep. model, signature of $\Lambda(1405)$ appears on $\pi\Sigma$ invariant mass spectrum around the binding energy of $\Lambda(1405)$
- For E-indep. model, signature of $\Lambda(1405)$ is weak, and cusp appears at $\pi\Sigma$ threshold

- For E-dep. model, signature of $\Lambda(1405)$ appears on $\pi\Sigma$ invariant mass spectrum around the binding energy of $\Lambda(1405)$
- For E-indep. model, signature of $\Lambda(1405)$ is weak, and cusp appears at $\pi\Sigma$ threshold
- Bump appears above the K^{bar}N threshold

Bump structure above KN threshold

K⁻*d* -> $\pi \Sigma n$ reaction $\bar{K}NN - \pi \Sigma N - \pi \Lambda N$

Alt-Grassberger-Sandhas(AGS) eq. : *Xij*; quasi two-body amplitude $X_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W) = (1 - \delta_{i,j})Z_{i,j}(\mathbf{p}_i, \mathbf{p}_j, W)$ $+ \sum_{n \neq i} \int d\mathbf{p}_n Z_{i,n}(\mathbf{p}_i, \mathbf{p}_n, W) \tau_n(W - E_n) X_{n,j}(\mathbf{p}_n, \mathbf{p}_j, W)$

Contribution of each amplitude

• X_{YK,d} component is dominant

 $Y_K \equiv \bar{K}N$

 $Y_{\pi} \equiv \pi Y$

 $N^* \equiv \pi N$ $d_v \equiv Y N$

- KN threshold cusp is enhanced in forward angle
- Channel dependence is also large in forward angle $[\bar{K}[NN]_{I=0}]_{I=1/2} = -1/2[[\bar{K}N]_{I=0}N]_{I=1/2} + \sqrt{3}/2[[\bar{K}N]_{I=1}N]_{I=1/2}$

Angular dependence

 θ ; *n* angle in C.M.

- KN threshold cusp is enhanced in forward angle
- Channel dependence is also large in forward angle
- bump above $K^{bar}N$ threshold energy is enhanced in $\theta=0$

Summary

- We investigate how the signature of the $\Lambda(1405)$ appears in K^-d scattering reaction.
- How the signatures appear depends on the twobody interaction models.
- The production reaction would be used to distinguish dynamical model of $\Lambda(1405)$.
- Channel dependence of the cross section is large
- We would also obtain the information on *I=1* $K^{bar}N-\pi\Sigma$ interactions from $K^{-}d$ scattering.
- Bump appears above the KN threshold, and it is enhanced in $\theta\text{=}0$

Future work

- Improve the two-body interaction model
 - Higher order of chiral perturbation
 - Higher partial wave
- Cutoff parameters dependence

• Compare with forthcoming J-PARC E31