Search for Excited States of

Σ Hypernucleus

in the J-PARC E13 Experiment

2015.08.04 M.Nakagawa Osaka University

Contents

- Study of YN interaction in S=-1
 - ΣN interaction
 - Search for excited state of Σ hypernucleus
 - High momentum (K⁻,π⁻) reaction
- J-PARC E13 experiment
 - Experimental setup
 - (Analysis is on-going)
- Summary

Study of YN interaction in S=-1

- Nucleon-Nucleon(NN) interaction
 - Studied through NN scattering and structure of nuclei
- Hyperon-Nucleon(YN) interaction in S=-1
 - ΛN interaction (isospin=0)
 - Study through structure of Λ hypernuclei
 - $-\Sigma N$ interaction (strong isospin dependence)
 - Non-isospin dependence part
 - Σ atom study and heavy Σ hypernuclei search \rightarrow stdied
 - isospin dependence part
 - Only one bound state of Σ hypernucleus

Strong isospin dependency

PRESENTATION

• Σ - nucleus potential

$$\underline{U_0^{\Sigma}} + \underline{U_{\tau}^{\Sigma}}(T_{\text{core}} \cdot t_{\Sigma}) / \underline{A_{\text{core}}}$$

Isospin independent $- U^{\Sigma}_{0}$ Lane's term Isospin dependent

Mass number of core nucleus

• KEK-PS E438 C, Si, In, Bi(K⁻, π^+) \rightarrow repulsive force

Lane's term

• T_{core} and t_{Σ} : isospin operator

 \rightarrow depends on the total isospin (T) of hypernuclei

Comparable to U^Σ₀ term in light nuclei
Strong attractive force appears depending on isospin combination
→ Observation of bound state in four-body system

Observation of ${}^{4}\Sigma$ He bound state

- T.Nagae et al., Phys.Rev.Lett. 80(1998)1605. KEK-PS E167
- $-B_{\Sigma_{+}}=0$ Bump structure -B_{Σ0}=0 BNL-AGS E905 30 - ⁴He(K⁻, π^+) \rightarrow T=3/2 ^{CD25} 20²0/20 repulsive - ⁴He(K⁻, π ⁻) \rightarrow T=1/2 , 3/2 15 Attractive → Bound state 10 ⁴_∑He ground state 5 $-\Gamma = 7 \pm 0.7 \text{ MeV}$ -30 -20 -10 0 $- -B_{\Sigma_{\pm}} = -4.4 \pm 0.3 \text{ MeV}$
 - s-state (0⁺) : Narrow peak

Excited states of Σ hypernucleus

- Information of ΣN interaction
 - Information of s-wave is dominant \rightarrow Not enough
 - Only ground state search experiment
- To obtain Information of p-wave in ΣN interaction
 - Search for Excited states of $\boldsymbol{\Sigma}$ hypernucleus
 - High recoil momentum
 - Select reaction angle
 - High momentum
 - (K⁻, π ⁻) reaction

Cross section of Λ and Σ

Expected results

- Changing artificially
 - strength factors of $(N_{R'}, N_{I})$
 - Case A: (0.6,0.9)
 - Factors are determined in the
 - ⁴He(K⁻, π^{\pm}) reaction at 0.6 GeV/ $c^{\frac{8}{8}}$
 - Case B: (0.0,0.9)
 - The magnitude is quite reduced
 - Case C: (1.0,1.0)
 - 1- is significantly enhanced

- U(p-wave) → factor x U(s-wave) $V_{\Sigma,T} \rightarrow N_R x V_{\Sigma,T}$: Real potential strength $W_{\Sigma,T} \rightarrow N_I x W_{\Sigma,T}$: Imaginary potential strength
- Ability to determine the strength of the Σ-nucleus potential for *p*-wave states

J-PARC E13 experiment

المناوية المريدي والمراجعة والمراجع والمراجع والمريط والمريط والمريد والمراجع والمريد والمحاور والمراجع والمراجع

J-PARC E13 Experiment

- Purpose
 - ${}^4_\Lambda$ He γ -ray spectroscopy
 - Search for excited states of Σ hypernucleus
- Missing mass spectroscopy of ⁴He(K⁻,π⁻) reaction
 - High momentum K⁻ beam :1.5GeV/c
 - Liquid ⁴He target : 3g/cm²
 - Reaction angle : 0° -20°
 - π- momentum : 1.0 1.5 GeV/c

Data summary

- K⁻ beam condition
 - Beam intensity : 300 k/spill(2s) K-/pi- ratio : ~2
 - Total beam time : ~138h 23 G K-
- Data taking
 - -⁴He physics run : 1.5 GeV/c
 - Yield of 1- state of ${}^{4}_{\Sigma}$ He : ~10⁶ events
 - Sigma+ production : 1.5, 1.8 GeV/c
 - Beam through : 1.2, 1.37, 1.5, 1.8 GeV/c
 - Empty target : 1.5 GeV/c

والمسترين والم

Analysis is on-going

والمالي والموالي والموالي والموالي والموالي والمراجع المراجع المراجع

Summary

- Study of ΣN interaction in S=-1
 - Search for excited state of Σ hypernucleus
 - Extract Σ -nucleus potential for p-wave
- J-PARC E13 experiment
 - ⁴He(K⁻, π ⁻) reaction at 1.5 GeV/c
 - Angular distribution
 - Obtained the missing mass spectrum is similar to Haradasan's calculation in CaseA

15

Back up

الملاجاتي الماجوي فياحي التجاوية بعفي الروانية المؤكلاتين وال

<u></u>

and a state of the second seco

and an a

Cross section of Λ and Σ

