

KEK 理論センター JPARC 分室、JAEA 先端基礎研究センター共催研究会
 「ストレンジネス核物理の発展方向」
 Aug. 3–7, 2015

¹⁹Fを標的とする sd 殻ハイパー核の生成断面積 (Productions of sd-shell hypernuclei)

Atsushi UMEYA (Nippon Inst. of Tech.)

Toshio MOTOBA (Osaka E.C. Univ.)

Introduction

S = -1 sector (Λ hypernuclei, ΛN interaction)

 (π^+, K^+) reaction (for wide-mass region) O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006). γ spectroscopy (for *p*-shell hypernuclei) H. Tamura, Nucl. Phys. A827, 153c (2009).

Effective AN interaction (for *s*- and *p*-shell hypernuclei)

$$V_{\Lambda N}^{\text{eff}} = V_0 + V_{\sigma\sigma} \sigma_N \cdot \sigma_\Lambda + V_{\text{SLS}} \ell_{\Lambda N} \cdot (s_\Lambda + s_N) + V_{\text{ALS}} \ell_{\Lambda N} \cdot (s_\Lambda - s_N) + V_{\text{Tensor}} S_{12}$$

- *p*-shell model D.J. Millener, Nucl. Phys. A 804, 84 (2008).
- Few-body E. Hiyama, Prog. Part. Nucl. Phys. 63, 339 (2009).

Next stage of hypernuclear studies

- *sd*-shell region ← This study
- S = -2 sector (Ξ hypernuclei)
- ΛN - ΣN coupling interaction, ΞN - $\Lambda \Lambda$ coupling interaction

Λ hypernuclei in *sd*-shell region

• The level structures of *sd*-shell nuclei are richer and more complex than those of *p*-shell nuclei.

For example

- **Parity doublet** $E({}^{19}\text{Ne}, 1/2^{-}) E({}^{19}\text{Ne}, 1/2^{+}_{g.s.}) = 0.275 \text{MeV}$
- Rotational band

Effects of hyperon addition for these core nuclei?

• Even the Λ single-particle energies are not well known experimentally.

Production experiments

- (K^-, π^-) reaction J-PARC E13 (Production of ${}^{19}_{\Lambda}$ F, γ spectroscopy)
- $(e, e'K^+)$ reaction JLab, MAMI

This study

Energy levels, production cross-sections and electro-magnetic transitions of $^{19}_\Lambda{\rm F}$ (balence 2N in sd-shell)

Energy levels of ¹¹C, ¹⁹F, ¹⁹Ne

J-PARC E13 Experiment

$,\pi^-$) **J-PARC E13**

 γ spectroscopy (*E*1, *M*1, *E*2 transitions) for low-lying states of $^{19}_{\Lambda}$ F

∜

This study

Calculation of the production cross-section of ${}^{19}_{\Lambda}$ F by the (K^-, π^-) reaction at incident momentum of 1.8 GeV/c

Shell model calculation (1)

$0\hbar\omega$ basis states positive parity

$1\hbar\omega$ basis states negative parity

Shell model calculation (2)

Shell-model wave functions (1)

Model space (for $^{19}_{\Lambda}$ F)

- 16 nucleons are inert in the ¹⁶O core.
- 2 valence nucleons move in the *sd*-shell orbits.
- $1p-1h \ 1\hbar\omega$ -excited states are considered for J^- states.
- Λ hyperon is assumed to be in the 0s, 0p, sd-shell orbits.

Core states (¹⁸F) + parity
$$(J_{core}^+)$$
 $(0s)^4 (0p)^{12}$ $(sd)^2$ $(0p-0h)$
- parity (J_{core}^-) $(0s)^4 (0p)^{11}$ $(sd)^3$ $(1p-1h)$
A single-particle state + parity (j_{Λ}^+) $0s_{1/2}^{\Lambda}$, $0d_{5/2}^{\Lambda}$, $0d_{3/2}^{\Lambda}$, $1s_{1/2}^{\Lambda}$
- parity (j_{Λ}^-) $0p_{3/2}^{\Lambda}$, $0p_{1/2}^{\Lambda}$
4 types of basis states (1) $J_{core}^+ \otimes j_{\Lambda}^+$ positive (2) $J_{core}^+ \otimes j_{\Lambda}^-$ negative
(3) $J_{core}^- \otimes j_{\Lambda}^+$ negative (4) $J_{core}^- \otimes j_{\Lambda}^-$ positive

Shell-model wave functions (2)

4 types of basis states (For example, basis states of ${}^{19}_{\Lambda}$ F)

Shell-model Hamiltonian

Two-body interaction *NN* effective interaction $\langle (sd)^2 | V | (sd)^2 \rangle$ modified Kuo-Brown G-matrix NP85, 40 (1966). PTP52, 509 (1974).

 $\langle p^{-1} sd|V|p^{-1} sd \rangle$ Warburton-Brown PSDT PRC46, 923 (1992)

 $\begin{array}{l} \Lambda N \text{ effective interaction} \\ \langle N\Lambda | V | N\Lambda \rangle \\ \text{NSC97f} \\ \text{PRC59, 21 (1999)} \\ \text{Using } 2.5V_{\text{ALS}} \text{ to adjust } LS \text{ splitting} \end{array}$

Adjusting s.p.e. of $0p_{3/2}$ and $0p_{1/2}$ to reproduce the energy levels of the ¹⁹F J^- states

Numerical Results : Energy levels for ${}^{19}_{\Lambda}$ F and 18 F

Configuration of ground state of ¹⁹F

$$|^{19}F; 1/2_{g.s.}^{+}\rangle = + \sqrt{0.11} | (^{16}O)(0d_{5/2})^{3} \rangle + \sqrt{0.31} | (^{16}O)(0d_{5/2})_{T=1,J=0}^{2} (1s_{1/2}) \rangle - \sqrt{0.14} | (^{16}O)(0d_{5/2})_{T=0,J=1}^{2} (1s_{1/2}) \rangle + \sqrt{0.11} | (^{16}O)(0d_{5/2})(0d_{3/2})(1s_{1/2}) \rangle + \sqrt{0.17} | (^{16}O)(1s_{1/2})^{3} \rangle + \cdots$$

The ground state of ¹⁹F is not described by a simple configuration due to the $1s_{1/2}$ orbit.

 $\implies \text{ In the production of } {}^{19}_{\Lambda}\text{F, transition strengths are fragmented} among several states and have small values.}$

(Magnetic moment of ¹⁹F cal. 2.89 μ_N , exp. 2.62 μ_N)

Spectroscopic factors of pickup reaction from ¹⁹F

Cross sections of ${}^{19}F(\pi^+, K^+)$ and ${}^{19}F(K^-, \pi^-)$

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different incident momenta (1)

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different incident momenta (2)

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different scattering angles (1)

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different scattering angles (2)

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different scattering angles (3)

Cross sections of ${}^{19}F(K^-,\pi^-)$ for low-lying states (1)

Cross sections of ${}^{19}F(K^-,\pi^-)$ for low-lying states (2)

M1 and E2 transitions of ¹⁸F

E1 transitions of ¹⁸F

E2, M1 and E1 transitions of ${}^{19}_{\Lambda}$ F

Summary

As a typical gate to medium-heavy *sd*-shell hypernuclei, we have calculated the energy levels, the production cross sections and electro-magnetic transition strengths of ${}^{19}_{\Lambda}$ F by using the multi-configuration shell model.

 $\Delta E(3/2^+ - 1/2^+_{g.s.}) = 0.419 \text{ MeV}$ $B(M1; 3/2^+ \rightarrow 1/2^+_{g.s.}) = 0.33 \,\mu_N^2$

However the cross section of $3/2^+$ states is the small value of

 $d\sigma/d\Omega = 0.29\,\mu \mathrm{b/sr}$

in ${}^{19}F(K^-, \pi^-){}^{19}_{\Lambda}F$ with $p_{K} = 1.80 \text{ GeV}/c \text{ and } \theta^{\text{Lab}} = 6^{\circ}.$

Backup

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different incident momenta (a)

Cross sections of ${}^{19}F(K^-,\pi^-)$ at different incident momenta (b)

Cross section of ${}^{19}F(\gamma, K^+)$

