# Coupled channel approach to two-baryon interactions from QCD 

Kenji Sasaki (CCS, University of Tsukuba)
for HAL QCD collaboration


## HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

| S. Aoki | T. Doi | F. Etminan | T. Hatsuda | Y. Ikeda |
| :--- | :--- | :--- | :--- | :--- |
| $(Y I T P)$ | $(R I K E N)$ | (Birjand U.) | $(R I K E N)$ | $(R I K E N)$ |
| T. Inoue | N. Ishii | K. Murano | H. Nemura | T. Miyamoto |
| (Nihon Univ.) | $(R C N P)$ | $(R C N P)$ | $($ Univ. of Tsukuba) | $($ YITP) |
| T. Iritani | S. Gongyo | D. Kawai |  |  |
| $(Y I T P)$ | $(Y I T P)$ | $(Y I T P)$ |  |  |

## Introduction

## Introduction

## BB interactions are inputs to investigate the nuclear structure



Once we obtain a "proper" nuclear potential, we apply them to the structure of (hyper-) nucleus.

Can we derive hadronic interactions from QCD?

## Strategy of HAL QCD

## Technical improvements

Unified Contraction Algorithm,

- Time dependent method, -Higher partial waves, oFinite volume method vs potential


Applications
oFew-body system oMedium heavy system oNeutron star EOS

Extensions of the method
-Generalized BB interaction
${ }^{\circ} \mathrm{N}-\Omega, \Omega-\Omega$ interaction
-Generalized Dec-Dec interaction
oCharmed baryon system
-Meson-meson,meson-baryon system
-Three-body interaction


## HAL QCD method

## Nambu-Bethe-Salpeter wave function

## Definition : equal time NBS w.f.

$$
\Psi^{\alpha}(E, \vec{r}) e^{-E t}=\sum_{\vec{x}}\langle 0| H_{1}^{\alpha}(t, \vec{x}+\vec{r}) H_{2}^{\alpha}(t, \vec{x})|E\rangle
$$

E : Total energy of the system
Local composite interpolating operators


$$
\begin{array}{ll}
B_{\alpha}=\epsilon^{a b c}\left(q_{a}^{T} C \gamma_{5} q_{b}\right) q_{c \alpha} & D_{\mu \alpha}=\epsilon^{a b c}\left(q_{a}^{T} C \gamma_{\mu} q_{b}\right) q_{c \alpha} \\
M=\left(\bar{q}_{a} \gamma_{5} q_{a}\right) & \text { Etc..... }
\end{array}
$$

Olt satisfies the Helmholtz eq. in asymptotic region : $\left(p^{2}+\nabla^{2}\right) \Psi(E, \vec{r})=0$
Using the reduction formula,
C.-J.D.Lin et al.,NPB619 (2001) 467.

$$
\Psi^{\alpha}(E, \vec{r})=\sqrt{Z_{H_{1}}} \sqrt{Z_{H_{2}}}\left(e^{i \vec{p} \cdot \vec{r}}+\int \frac{d^{3} q}{2 E_{q}} \frac{T(q, p)}{4 E_{p}\left(E_{q}-E_{p}-i \epsilon\right)} e^{i \vec{q} \cdot \vec{r}}\right)
$$



$$
\Psi(E, \vec{r}) \simeq A \frac{\sin (p r+\delta(E))}{p r}
$$

Phase shift is defined as

$$
S \equiv e^{i \delta}
$$

NBS wave function has a same asymptotic form with quantum mechanics. (NBS wave function is characterized from phase shift)

## Nambu-Bethe-Salpeter wave function

## Definition : equal time NBS w.f.

$$
\Psi^{\alpha}(E, \vec{r}) e^{-E t}=\sum_{\vec{x}}\langle 0| H_{1}^{\alpha}(t, \vec{x}+\vec{r}) H_{2}^{\alpha}(t, \vec{x})|E\rangle
$$

$E$ : Total energy of the system

## Local composite interpolating operators

$$
\begin{array}{ll}
B_{\alpha}=\epsilon^{a b c}\left(q_{a}^{T} C \gamma_{5} q_{b}\right) q_{c \alpha} & D_{\mu \alpha}=\epsilon^{a b c}\left(q_{a}^{T} C \gamma_{\mu} q_{b}\right) q_{c \alpha} \\
M=\left(\overline{q_{a}} \gamma_{5} q_{a}\right) & \text { Etc..... }
\end{array}
$$

Olt satisfies the Helmholtz eq. in asymptotic region: $\left(p^{2}+\nabla^{2}\right) \Psi(E, \vec{r})=0$
Using the reduction formula,

$$
\Psi^{\alpha}(E, \vec{r})=\sqrt{Z_{H_{1}}} \sqrt{Z_{H_{2}}}\left(e^{i \vec{p} \cdot \vec{r}}+\int \frac{d^{3} q}{2 E_{q}} \frac{T(q, p)}{4 E_{p}\left(E_{q}-E_{p}-i \epsilon\right)} e^{i \vec{a} \cdot \vec{r}}\right)
$$

C.-J.D.Lin et al.,NPB619 (2001) 467.


$$
\Psi(E, \vec{r}) \simeq A \frac{\sin (p r+\delta(E))}{p r}
$$

Phase shift is defined as

$$
S \equiv e^{i \delta}
$$

NBS wave function has a same asymptotic form with quantum mechanics. (NBS wave function is characterized from phase shift)

## Potential in HAL QCD method

We define potentials which satisfy Schrödinger equation

$$
\left.\left(p^{2}+\nabla^{2}\right) \Psi^{\alpha}(E, \vec{r}) \equiv \int d^{3} y \underline{U_{\alpha}^{\alpha}(\vec{x}, \vec{y}}\right) \Psi^{\alpha}(E, \vec{y})
$$

Energy independent potential

$$
\begin{aligned}
\left(p^{2}+\nabla^{2}\right) \Psi^{\alpha}(E, \vec{r}) & =K^{\alpha}(E, \vec{r}) \\
K^{\alpha}(E, \vec{r}) & \equiv \int d E^{\prime} K^{\alpha}\left(E^{\prime}, \vec{x}\right) \int d^{3} y \tilde{\Psi}^{\alpha}\left(E^{\prime}, \vec{y}\right) \Psi^{\alpha}(E, \vec{y}) \\
& =\int d^{3} y\left[\int d E^{\prime} K^{\alpha}\left(E^{\prime}, \vec{x}\right) \tilde{\Psi}^{\alpha}\left(E^{\prime}, \vec{y}\right)\right] \Psi^{\alpha}(E, \vec{y}) \\
& =\int d^{3} y U_{\alpha}^{\alpha}(\vec{x}, \vec{y}) \Psi^{\alpha}(E, \vec{y})
\end{aligned}
$$

We can define an energy independent potential but it is fully non-local.
This potential automatically reproduce the scattering phase shift

## Time-dependent method

Start with the normalized four-point correlator.

$$
\begin{array}{cc}
R_{I}^{B_{1} B_{2}}(t, \vec{r})= & F_{B_{1} B_{2}}(t, \vec{r}) e^{\left(m_{1}+m_{2}\right) t} \\
=A_{0} \Psi\left(\vec{r}, E_{0}\right) e^{-\left(E_{0}-m_{1}-m_{2}\right) t}+A_{1} \Psi\left(\vec{r}, E_{1}\right) e^{-\left(E_{1}-m_{1}-m_{2}\right) t}+\cdots \\
\left(\frac{p_{0}^{2}}{2 \mu}+\frac{\nabla^{2}}{2 \mu}\right) \Psi\left(\vec{r}, E_{0}\right)=\int U\left(\vec{r}^{\prime}, \vec{r}^{\prime}\right) \Psi\left(\vec{r}^{\prime}, E_{0}\right) d^{3} r^{\prime} \\
\left(\frac{p_{1}^{2}}{2 \mu}+\frac{\nabla^{2}}{2 \mu}\right) \Psi\left(\vec{r}, E_{1}\right)=\int U\left(\vec{r}, \vec{r}^{\prime}\right) \Psi\left(\vec{r}^{\prime}, E_{1}\right) d^{3} r^{\prime} \\
\left.\left(-\frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 \mu}\right) R_{I}^{B_{1} B_{2}}(t, \vec{r})=\int U\left(\vec{r}, \vec{r}^{\prime}\right) R_{I}^{B_{1} B_{2}}(t, \vec{r}) d^{3} r^{\prime}\right)
\end{array}
$$

## BB interaction from NBS wave function

$$
\left(-\frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 \mu}\right) R_{I}^{B_{1} B_{2}}(t, \vec{r})=\int U\left(\vec{r}, \vec{r}^{\prime}\right) R_{I}^{B_{1} B_{2}}(t, \vec{r}) d^{3} r^{\prime}
$$

Derivative (velocity) expansion of $U$ is performed to deal with its nonlocality.
oFor the case of oct-oct system,

$$
U\left(\vec{r}, \vec{r}^{\prime}\right)=\underbrace{\left[V_{C}(r)+S_{12} V_{T}(r)\right.}_{\text {Leading order part }}]+\left[\vec{L} \cdot \vec{S}_{s} V_{L S}(r)+\vec{L} \cdot \vec{S}_{a} V_{A L S}(r)\right]+O\left(\nabla^{2}\right)
$$

-For the case of dec-oct and dec-dec system,

$$
\begin{aligned}
& U\left(\vec{r}, \vec{r}^{\prime}\right)=[\underbrace{V_{C}(r)+S_{12} V_{T_{1}}(r)+S_{i i} V_{T_{2}}(r)+O\left(\text { Spin op }{ }^{3}\right)}_{\text {Leading order part }}]+O\left(\nabla^{2}\right) \\
& \equiv\left[\underline{V_{C}^{\text {eff }}}(r)\right]+O\left(\nabla^{2}\right) \quad\left(\left(\vec{r} \cdot{\overrightarrow{S_{1}}}^{2}\right)^{2}-\frac{\vec{r}^{2}}{3}{\overrightarrow{S_{1}}}^{2}+\left(\vec{r} \cdot{\overrightarrow{S_{2}}}^{2}-\frac{\vec{r}^{2}}{3}{\overrightarrow{S_{2}}}^{2}\right) V_{T^{2}}(r)\right.
\end{aligned}
$$

We consider the effective central potential which contains not only the genuine central potential but also tensor parts.

## Phase shift from potential and FV method

Energy eigenvalues in finite volume wall source: $\Xi \Xi\left({ }^{1} s_{0}\right.$ )


Solution in FV
T.Iritani(HAL QCD) Lattice2015 energy eigenvalues

| vol. | E (g.s.) $[\mathrm{MeV}]$ | $\mathrm{E}(1 \mathrm{st})[\mathrm{MeV}]$ |
| :--- | :--- | :--- |
| $40^{3}$ | $-4.55(1.18)$ | $75.63(1.31)$ |
| $48^{3}$ | $-2.58(22)$ | $52.87(33)$ |
| $64^{3}$ | $-1.13(9)$ | $28.71(9)$ |

- consistent with "wall src." $\Delta E(t)$ fit $-2.25(1.28) \mathrm{MeV}$ @ $48^{3} \times 48$

Comparison between the potential method and Lüscher's method
$\pi$ - $\pi$ scattering with quench QCD

| $\mathrm{M}_{\pi}=940 \mathrm{MeV}$, \#confs $=350$ |  |  |
| :---: | :---: | :---: |
|  |  | wall, Dirichlet |
|  | $\stackrel{-}{ }$ | Gaussian, Dirichlet |
|  | + | wall, Dirichlet |
|  | $\xrightarrow{+}$ | Gaussian, Dirichlet |
| -0.18 | -0.16 | -0.14 |



Resulting scattering phase shifts are consistent from both methods

## Coupled channel Schrödinger equation

## NBS wave function with ith energy eigen state

Two-channel coupling case

$$
\begin{aligned}
& \Psi^{\alpha}\left(E_{i}, \vec{r}\right)=\langle 0|\left(B_{1} B_{2}\right)^{\alpha}(\vec{r})\left|E_{i}\right\rangle \\
& \Psi^{\beta}\left(E_{i}, \vec{r}\right)=\langle 0|\left(B_{1} B_{2}\right)^{\beta}(\vec{r})\left|E_{i}\right\rangle
\end{aligned}
$$

$$
\int d r \tilde{\Psi}_{\beta}\left(E^{\prime}, \vec{r}\right) \Psi^{\gamma}(E, \vec{r})=\delta\left(E^{\prime}-E\right) \delta_{\beta}{ }^{\gamma}
$$

We define potentials which satisfy a coupled channel Schrodinger equation

$$
\binom{\left(p_{\alpha}^{2}+\nabla^{2}\right) \Psi^{\alpha}\left(E_{i}, \vec{r}\right)}{\left(p_{\beta}^{2}+\nabla^{2}\right) \Psi^{\beta}\left(E_{i}, \vec{r}\right)}=\int d r^{\prime}\left(\begin{array}{cc}
U^{\alpha}{ }_{\alpha}\left(\vec{r}, \vec{r}^{\prime}\right) & U^{\alpha}{ }_{\beta}\left(\vec{r}^{\prime}, \vec{r}^{\prime}\right) \\
\left.U_{\alpha}^{\beta}{ }_{\alpha} \vec{r}, \vec{r}^{\prime}\right) & U^{\beta}{ }_{\beta}\left(\vec{r}^{\prime} \vec{r}^{\prime}\right)
\end{array}\right)\binom{\Psi^{\alpha}\left(E_{i}, \vec{r}^{\prime}\right)}{\Psi^{\beta}\left(E_{i}, \vec{r}^{\prime}\right)}
$$

Leading order of velocity expansion and time-derivative method

$$
\begin{aligned}
& \begin{array}{l}
\binom{\left(-\frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 \mu_{\alpha}}\right) R_{E_{0}}^{\alpha}(t, \vec{r})}{\left(-\frac{\partial}{\partial t}+\frac{\nabla^{2}}{2 \mu_{\beta}}\right) R_{E_{0}}^{\beta}(t, \vec{r})}=\left(\begin{array}{cc}
V_{\alpha}^{\alpha}(\vec{r}) & V_{\beta}^{\alpha}(\vec{r}) \Delta^{\alpha}{ }_{\beta}(t) \\
V^{\beta}{ }_{\alpha}(\vec{r}) \Delta^{\beta}{ }_{\alpha}(t) & V^{\beta}{ }_{\beta}(\vec{r})
\end{array}\right)\binom{R_{E_{0}}^{\alpha}(t, \vec{r})}{R_{E_{0}}^{\beta}(t \vec{r})} \\
\text { Considering two different energy eigen states }
\end{array} \underbrace{}_{\Delta_{\beta}^{\alpha}=\frac{\exp \left(-\left(m_{\alpha_{1}}+m_{\alpha_{2}}\right) t\right)}{\exp \left(-\left(m_{\beta_{1}}+m_{\beta_{2}}\right) t\right)}} \\
& \text { Considering two different energy eigen states }
\end{aligned}
$$

$$
\left(\begin{array}{cc}
V_{\alpha}^{\alpha}(\vec{r}) & V_{\beta}^{\alpha}(\vec{r}) \Delta_{\beta}^{\alpha} \\
V_{\alpha}^{\beta}(\vec{r}) \Delta_{\alpha}^{\beta} & V_{\beta}^{\beta}(\vec{r})
\end{array}\right)=\left(\begin{array}{cc}
\left(\frac{\nabla^{2}}{2 \mu_{\alpha}}-\frac{\partial}{\partial t}\right) R_{E 0}^{\alpha}(t, \vec{r}) & \left(\frac{\nabla^{2}}{2 \mu_{\beta}}-\frac{\partial}{\partial t}\right) R_{E 1}^{\alpha}(t, \vec{r}) \\
\left(\frac{\nabla^{2}}{2 \mu_{\alpha}}-\frac{\partial}{\partial t}\right) R_{E 0}^{\beta}(t, \vec{r}) & \left(\frac{\nabla^{2}}{2 \mu_{\beta}}-\frac{\partial}{\partial t}\right) R_{E 1}^{\beta}(t, \vec{r})
\end{array}\right)\left(\begin{array}{ll}
R_{E 0}^{\alpha}(t, \vec{r}) & R_{E 1}^{\alpha}(t, \vec{r}) \\
R_{E 0}^{\beta}(t, \vec{r}) & R_{E 1}^{\beta}(t, \vec{r})
\end{array}\right)^{-1}
$$

## $S=-2 B B$ interaction

--- focus on the H-dibaryon ---

## SU(3) feature of BB interaction

Three flavor (u,d,s) world
Flavor symmetric


In view of quark degrees of freedom
Oka, Shimizu and Yazaki NPA464 (1987)
-Short range repulsion in BB interaction could be a result of
Pauli principle and color-magnetic interaction for the quarks.

- Strengths of repulsive core in YN and YY interaction are largely depend on their flavor structures.
-For the s-wave BB system, no repulsive core is predicted in flavor singlet state which is known as H-dibaryon channel.


## B-B potentials in SU(3) limit



Two-flavors





Three-flavors
-Quark Pauli principle can be seen at around short distances

- No repulsive core in flavor singlet state
- Strongest repulsion in flavor 8s state
-Possibility of bound H-dibaryon in flavor singlet channel.


## H-dibaryon (unphysical situation)




HAL : PRL106(2011)162002
NPL: PRL106(2011)162001
Both results shows the bound H-dibaryon state in heavy pion region. oPotential in flavor singlet channel is getting more attractive as decreasing quark masses
Does the H-dibaryon state survive on the physical point?
$\longrightarrow$ Go to the $\mathrm{SU}(3)$ broken situation.

## $\Lambda \Lambda, N \Xi, \Sigma \Sigma(I=0)^{1} S_{0}$ channel

## $\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ full QCD with $\mathrm{L}=\mathbf{2 . 9 f m}$

## Diagonal elements


shallow attractive pocket


Deeper attractive pocket


Off-diagonal elements
All channels have repulsive core




## $\Lambda \Lambda$ and $N \Xi$ phase shifts

$\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ full QCD with $\mathrm{L}=2.9 \mathrm{fm}$

$$
m \pi=700 \mathrm{MeV}
$$


$m \pi=570 \mathrm{MeV}$


Preliminary!

$$
m \pi=410 \mathrm{MeV}
$$



Argand diagram for Strangeness $\mathrm{S}=-2{ }^{1} \mathrm{~S}_{0}(\mathrm{I}=0)$ channel
$m \pi=700 \mathrm{MeV}$ : bound state
m $\boldsymbol{m}=570 \mathrm{MeV}$ : resonance near $\Lambda \Lambda$ threshold O $m=410 \mathrm{MeV}$ : resonance near $N \Xi$ threshold..$\stackrel{\stackrel{\circ}{-}}{\circ}$


## $\Lambda \Lambda, N \Xi, \Sigma \Sigma(I=0){ }^{1} S_{0}$ channel near the physical point

$>\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ full QCD with $\mathrm{L}=8 \mathrm{fm}, m \pi=145 \mathrm{MeV}$
Preliminary!

Diagonal elements


Off-diagonal elements

-All diagonal element have a repulsive core $\Sigma \Sigma-\Sigma \Sigma$ potential is strongly repulsive.
-Off-diagonal potentials are relatively strong except for $\Lambda \Lambda-N \Xi$ transition
-We need more statistics to discuss physical observables through this potential.

## Comparison of potential matrices

Transformation of potentials from the particle basis to the $\mathrm{SU}(3)$ irreducible representation (irrep) basis.

In the SU(3) irreducible representation basis, the potential matrix should be diagonal in the $\mathrm{SU}(3)$ symmetric configuration.

Off-diagonal part of the potential matrix in the $\mathrm{SU}(3)$ irrep basis would be an effectual measure of the $\mathrm{SU}(3)$ breaking effect.

## Potentials in ${ }^{1} S_{0}$ channel with $S U(3)$ basis

$\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ full QCD with $\mathrm{L}=8 \mathrm{fm}, m \pi=145 \mathrm{MeV}$
Preliminary!

Diagonal elements


Off-diagonal elements

-Potential of flavor singlet channel does not have a repulsive core
-Potential of flavor octet channel is strongly repulsive which reflects Pauli effect. -Off-diagonal potentials are visible only in $r<1 \mathrm{fm}$ region.

## Interactions of decuplet baryons

## SU(3) aspects of BB interaction

We have succeeded to evaluate potentials between ground state baryons directly from QCD.


Inclusion of decuplet baryons
-For decuplet-octet system

$$
10 \otimes 8=35 \oplus 8 \oplus 10 \oplus 27
$$


-For decuplet-decuplet system

$$
10 \otimes 10=28 \oplus 27 \oplus 35 \oplus 10
$$

$$
\Delta \Delta \text { state }(\mathrm{I}=0, \mathrm{~J}=3)
$$

Alternative source of generalized baryon-baryon interactions
$N \Omega$ interaction

## Octet-Decuplet interaction

-Flavor symmetry aspect
Octet-Decuplet interaction can be classified as

$$
8 \otimes 10=35 \oplus 8 \oplus 10 \oplus 27
$$

Strongly attractive CMI is expected
Flavor octet dibaryon is predicted
M.Oka PRD38-298
$N \Omega J^{\mathrm{P}}(\mathrm{I})=2^{+}(1 / 2)$ is considered
-Easy to tackle it by lattice QCD simulation

- Lowest state in J=2 coupled channel - $\mathrm{N} \Omega-\Lambda \Xi *-\Sigma \Xi *-\Xi \Sigma *$
- Multi-strangeness reduces a statistical noise
- Wick contraction is very simple


## $N \Omega$ system from quark model

One of di-baryon candidate
T.Goldman et al PRL59(1987)627
(Quasi-)Bound state is reported with $\mathrm{J}=2, \mathrm{I}=1 / 2$
Constituent quark model
M.Oka PRD38(1988)298

- CMI does not contribute for this system because of no quark exchange between baryons.
- Coupled channel effect is important.

Chiral quark model
Q.B.Li, P.N.Shen, EPJA8(2000)

- Strong attraction yielded by scalar exchange




## $N \Omega$ system $J^{\rho}(I)=2^{+}(1 / 2)$

$\mathrm{N}_{\mathrm{f}}=\mathbf{2 + 1}$ full QCD with $\mathrm{L}=1.9 \mathrm{fm}$
F.Etminan(HAL QCD), NPA928(2014)89


$N \Omega$ state cannot decay into $\Lambda \Xi$ (D-wave) state in this setup
-Strongly attractive S-wave effective potential in $\mathrm{J}^{\mathrm{p}}(\mathrm{I})=\mathbf{2}^{\boldsymbol{+}}(\mathbf{1 / 2 )}$
-Good baseline to explore $\mathrm{S}=-\mathbf{3}$ baryonic system

Decuplet-Decuplet interactions

## Decuplet-Decuplet interaction

## Flavor symmetry aspect

Decuplet-Decuplet interaction can be classified as

$$
10 \otimes 10=28 \oplus \oplus^{\prime} 2 \chi \oplus 3\{\oplus \overline{10}
$$



|  | 28plet $\left(0^{+}\right)$ | 28plet $\left(2^{+}\right)$ | $10^{*}$ plet $\left(1^{+}\right)$ | $10^{*}$ plet $\left(3^{+}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Pauli | allowed | forbidden |  | allowed |
| CMI | repulsive | --- | -- | Not attractive |

$\bullet-\Delta(\mathrm{J}=3)$ : Bound (resonance) state was found in experiment.
$\bullet-\Delta(\mathrm{J}=0)$ [and $\Omega-\Omega(\mathrm{J}=0)$ ]: Mirror of $\Delta-\Delta(\mathrm{J}=3)$ state

## Decuplet-Decuplet interaction in SU(3) limit

$N_{f}=2+1$ full QCD with $L=1.93 \mathrm{fm}, m \pi=1015 \mathrm{MeV}$
Preliminary!


## $\Omega \Omega J^{D}(I)=0^{+}(0)$ state in unphysical region

$N_{f}=\mathbf{2 + 1}$ full QCD with $L=3 f m, m \pi=700 \mathrm{MeV}$
The $\Omega \Omega$ state is stable against the strong interaction.

-Short range repulsion and attractive pocket are found. oPotential is nearly independent on " $t$ " within statistical error.

- The system may appear close to the unitary limit.


## Summary and outlook

We have investigated coupled channel hadronic interactions from lattice QCD.

We have studied exotic candidate states

- H-dibaryon channel
- There is strongly attractive potential in flavor singlet state.
- It is not enough statistics to calculate several observables and to discuss the fate of H -dibayon.
- $\mathrm{N} \Omega$ state with $\mathrm{J}^{\mathrm{p}}=2^{+}$
- It is strongly attractive without short range repulsion.
- It forms a bound state with about 20MeV B.E..
- $\Omega \mathrm{N}-\Xi * \Sigma-\Xi * \Lambda-\Sigma * \Xi$ coupled channel calculation is necessary
$-\Delta \Delta$ and $\Omega \Omega$ states
- $\Delta \Delta(\mathrm{I}=0)$ have strongly attractive potential
$-\Delta \Delta(\mathrm{l}=3)$ and $\Omega \Omega$ potential have repulsive core and attractive pocket
- Both channels form (quasi-)bound state???

