Coupled channel approach to two-baryon interactions from QCD

Kenji Sasaki (CCS, University of Tsukuba)

for HAL QCD collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

S. Aoki	T. Doi	F. Etminan	T. Hatsuda	Y. Ikeda
(<i>YITP</i>)	(<i>RIKEN</i>)	(<i>Birjand U</i> .)	(<i>RIKEN</i>)	(<i>RIKEN</i>)
T. Inoue	N. Ishii	K. Murano	H. Nemura	T. Miyamoto
(<i>Nihon Univ</i> .)	(<i>RCNP</i>)	(<i>RCNP</i>)	(<i>Univ. of Tsukuba</i>)	(<i>YITP</i>)
T. Iritani (<i>YITP</i>)	S. Gongyo (<i>YITP</i>)	D. Kawai (<i>YITP</i>)		

Introduction

Introduction

BB interactions are inputs to investigate the nuclear structure

Once we obtain a "proper" nuclear potential, we apply them to the structure of (hyper-) nucleus.

Can we derive hadronic interactions from QCD?

Strategy of HAL QCD

Technical improvements

- Unified Contraction Algorithm,
- Time dependent method,
- Higher partial waves,
- Finite volume method vs potential

Extensions of the method

uds

- Generalized BB interaction
- ■N–Ω, Ω–Ω interaction
- Generalized Dec-Dec interaction
- Charmed baryon system
- Meson-meson,meson-baryon system
- Three-body interaction

Few-body system
 Medium heavy system
 Neutron star EOS

HAL QCD method

Nambu-Bethe-Salpeter wave function

It satisfies the Helmholtz eq. in asymptotic region : $(p^2 + \nabla^2) \Psi(E, \vec{r}) = 0$

 $\Psi(E, \vec{r}) \simeq A \frac{\sin(pr + \delta(E))}{pr}$

Using the reduction formula.

C.-J.D.Lin et al., NPB619 (2001) 467.

$$\Psi^{\alpha}(E,\vec{r}) = \sqrt{Z_{H_1}} \sqrt{Z_{H_2}} \left(e^{i\vec{p}\cdot\vec{r}} + \int \frac{d^3q}{2E_q} \frac{T(q,p)}{4E_p(E_q - E_p - i\epsilon)} e^{i\vec{q}\cdot\vec{r}} \right)$$

Phase shift is defined as

$$S \equiv e^{i\delta}$$

NBS wave function has a same asymptotic form with quantum mechanics. (NBS wave function is characterized from phase shift)

Nambu-Bethe-Salpeter wave function

Definition : equal time NBS w.f. $\Psi^{\alpha}(E,\vec{r})e^{-Et} = \sum_{\vec{x}} \langle 0|H_{1}^{\alpha}(t,\vec{x}+\vec{r})H_{2}^{\alpha}(t,\vec{x})|E\rangle \qquad E: \text{Total energy of the system}$ **Local composite interpolating operators** $B_{\alpha} = \epsilon^{abc}(q_{a}^{T}C\gamma_{5}q_{b})q_{c\alpha} \qquad D_{\mu\alpha} = \epsilon^{abc}(q_{a}^{T}C\gamma_{\mu}q_{b})q_{c\alpha}$ $M = (\bar{q}_{a}\gamma_{5}q_{a}) \qquad \text{Etc....}$

• It satisfies the Helmholtz eq. in asymptotic region : $(p^2 + \nabla^2) \Psi(E, \vec{r}) = 0$

 $\Psi(E, \vec{r}) \simeq A \frac{\sin(pr + \delta(E))}{2}$

Using the reduction formula,

$$\Psi^{\alpha}(E,\vec{r}) = \sqrt{Z_{H_1}} \sqrt{Z_{H_2}} \left(e^{i\vec{p}\cdot\vec{r}} + \int \frac{d^3q}{2E_q} \frac{T(q,p)}{4E_p(E_q - E_p - i\epsilon)} e^{i\vec{q}\cdot\vec{r}} \right)$$

C.-J.D.Lin et al., NPB619 (2001) 467.

Phase shift is defined as

$$S \equiv e^{i\delta}$$

NBS wave function has a same asymptotic form with quantum mechanics. (NBS wave function is characterized from phase shift)

Potential in HAL QCD method

We define potentials which satisfy Schrödinger equation

$$(p^2 + \nabla^2) \Psi^{\alpha}(E, \vec{r}) \equiv \int d^3 y \, U^{\alpha}_{\alpha}(\vec{x}, \vec{y}) \, \Psi^{\alpha}(E, \vec{y})$$

Energy independent potential

$$\begin{pmatrix} p^2 + \nabla^2 \end{pmatrix} \Psi^{\alpha}(E, \vec{r}) = K^{\alpha}(E, \vec{r}) K^{\alpha}(E, \vec{r}) \equiv \int dE' K^{\alpha}(E', \vec{x}) \int d^3 y \tilde{\Psi}^{\alpha}(E', \vec{y}) \Psi^{\alpha}(E, \vec{y}) = \int d^3 y \left[\int dE' K^{\alpha}(E', \vec{x}) \tilde{\Psi}^{\alpha}(E', \vec{y}) \right] \Psi^{\alpha}(E, \vec{y}) = \int d^3 y U^{\alpha}_{\alpha}(\vec{x}, \vec{y}) \Psi^{\alpha}(E, \vec{y})$$

We can define an energy independent potential but it is fully non-local.

This potential automatically reproduce the scattering phase shift

0 0.5 1 1.5

r [fm]

2

2.5

Time-dependent method

Start with the normalized four-point correlator.

$$R_{I}^{B_{1}B_{2}}(t,\vec{r}) = F_{B_{1}B_{2}}(t,\vec{r})e^{(m_{1}+m_{2})t}$$
Each wave functions satisfy
Schrödinger eq. with proper energy

$$= A_{0}\Psi(\vec{r},E_{0})e^{-(E_{0}-m_{1}-m_{2})t} + A_{1}\Psi(\vec{r},E_{1})e^{-(E_{1}-m_{1}-m_{2})t} + \cdots$$

$$\left(\frac{p_{0}^{2}}{2\mu} + \frac{\nabla^{2}}{2\mu}\right)\Psi(\vec{r},E_{0}) = \int U(\vec{r},\vec{r}')\Psi(\vec{r}',E_{1})d^{3}r'$$

$$\left(\frac{p_{1}^{2}}{2\mu} + \frac{\nabla^{2}}{2\mu}\right)\Psi(\vec{r},E_{1}) = \int U(\vec{r},\vec{r}')R_{I}^{B_{1}B_{2}}(t,\vec{r})d^{3}r'$$

$$\left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu}\right)R_{I}^{B_{1}B_{2}}(t,\vec{r}) = \int U(\vec{r},\vec{r}')R_{I}^{B_{1}B_{2}}(t,\vec{r})d^{3}r'$$

A single state saturation is not required!!

BB interaction from NBS wave function

$$\left(-\frac{\partial}{\partial t}+\frac{\nabla^2}{2\mu}\right)R_I^{B_1B_2}(t,\vec{r})=\int U(\vec{r},\vec{r}')R_I^{B_1B_2}(t,\vec{r})d^3r'$$

Derivative (velocity) expansion of U is performed to deal with its nonlocality.

For the case of oct-oct system,

$$U(\vec{r},\vec{r}') = \begin{bmatrix} V_C(r) + S_{12}V_T(r) \end{bmatrix} + \begin{bmatrix} \vec{L} \cdot \vec{S}_s V_{LS}(r) + \vec{L} \cdot \vec{S}_a V_{ALS}(r) \end{bmatrix} + O(\nabla^2)$$

Leading order part

For the case of dec-oct and dec-dec system,

$$U(\vec{r},\vec{r}') = \begin{bmatrix} V_C(r) + S_{12}V_{T_1}(r) + S_{ii}V_{T_2}(r) + O(Spin op^3) \end{bmatrix} + O(\nabla^2)$$

Leading order part

$$\equiv \begin{bmatrix} V_C^{eff}(r) \end{bmatrix} + O(\nabla^2) \qquad ((\vec{r}\cdot\vec{S_1})^2 - \frac{\vec{r}^2}{3}\vec{S_1}^2 + (\vec{r}\cdot\vec{S_2})^2 - \frac{\vec{r}^2}{3}\vec{S_2}^2)V_{T^2}(r)$$

We consider the effective central potential which contains not only the genuine central potential but also tensor parts.

Phase shift from potential and FV method

Resulting scattering phase shifts are consistent from both methods

Coupled channel Schrödinger equation

NBS wave function with ith energy eigen state

Two-channel coupling case

 $\Psi^{\alpha}(E_i, \vec{r}) = \langle 0 | (B_1 B_2)^{\alpha}(\vec{r}) | E_i \rangle$ $\Psi^{\beta}(E_i, \vec{r}) = \langle 0 | (B_1 B_2)^{\beta}(\vec{r}) | E_i \rangle$

 $\int dr \tilde{\Psi}_{\beta}(E',\vec{r}) \Psi^{\gamma}(E,\vec{r}) = \delta(E'-E) \delta_{\beta}^{\gamma}$

We define potentials which satisfy a coupled channel Schrodinger equation

 $\begin{pmatrix} (p_{\alpha}^{2} + \nabla^{2})\Psi^{\alpha}(E_{i},\vec{r}) \\ (p_{\beta}^{2} + \nabla^{2})\Psi^{\beta}(E_{i},\vec{r}) \end{pmatrix} = \int dr' \begin{pmatrix} U_{\alpha}^{\alpha}(\vec{r},\vec{r}\,') & U_{\beta}^{\alpha}(\vec{r},\vec{r}\,') \\ U_{\alpha}^{\beta}(\vec{r},\vec{r}\,') & U_{\beta}^{\beta}(\vec{r},\vec{r}\,') \end{pmatrix} \begin{pmatrix} \Psi^{\alpha}(E_{i},\vec{r}\,') \\ \Psi^{\beta}(E_{i},\vec{r}\,') \end{pmatrix}$

Leading order of velocity expansion and time-derivative method

$$\begin{pmatrix} \left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu_{\alpha}}\right) R_{E_{0}}^{\alpha}(t,\vec{r}) \\ \left(-\frac{\partial}{\partial t} + \frac{\nabla^{2}}{2\mu_{\beta}}\right) R_{E_{0}}^{\beta}(t,\vec{r}) \end{pmatrix} = \begin{pmatrix} V_{\alpha}^{\alpha}(\vec{r}) & V_{\beta}^{\alpha}(\vec{r}) \Delta_{\beta}^{\alpha}(t) \\ V_{\alpha}^{\beta}(\vec{r}) \Delta_{\alpha}^{\beta}(t) & V_{\beta}^{\beta}(\vec{r}) \end{pmatrix} \begin{pmatrix} R_{E_{0}}^{\alpha}(t,\vec{r}) \\ R_{E_{0}}^{\beta}(t,\vec{r}) \end{pmatrix} \begin{pmatrix} R_{E_{0}}^{\alpha}(t,\vec{r})$$

Considering two different energy eigen states

$$\begin{pmatrix} V^{\alpha}_{\ \alpha}(\vec{r}) & V^{\alpha}_{\ \beta}(\vec{r})\Delta^{\alpha}_{\beta} \\ V^{\beta}_{\ \alpha}(\vec{r})\Delta^{\beta}_{\alpha} & V^{\beta}_{\ \beta}(\vec{r}) \end{pmatrix} = \begin{pmatrix} (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\alpha}_{E0}(t,\vec{r}) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\alpha}_{E1}(t,\vec{r}) \\ (\frac{\nabla^{2}}{2\mu_{\alpha}} - \frac{\partial}{\partial t})R^{\beta}_{E0}(t,\vec{r}) & (\frac{\nabla^{2}}{2\mu_{\beta}} - \frac{\partial}{\partial t})R^{\beta}_{E1}(t,\vec{r}) \end{pmatrix} \begin{pmatrix} R^{\alpha}_{E0}(t,\vec{r}) & R^{\alpha}_{E1}(t,\vec{r}) \\ R^{\beta}_{E0}(t,\vec{r}) & R^{\beta}_{E1}(t,\vec{r}) \end{pmatrix}^{-1}$$

S=-2 BB interaction

--- focus on the H-dibaryon ---

SU(3) feature of BB interaction

In view of quark degrees of freedom

Oka, Shimizu and Yazaki NPA464 (1987)

 Short range repulsion in BB interaction could be a result of Pauli principle and color-magnetic interaction for the quarks.

- Strengths of repulsive core in YN and YY interaction are largely depend on their flavor structures.
- For the s-wave BB system, no repulsive core is predicted in flavor singlet state which is known as H-dibaryon channel.

B-B potentials in SU(3) limit

*m*π**= 469MeV**

Two-flavors

Three-flavors

- Quark Pauli principle can be seen at around short distances
 - No repulsive core in flavor singlet state
 - Strongest repulsion in flavor 8s state
- Possibility of bound H-dibaryon in flavor singlet channel.

H-dibaryon (unphysical situation)

Both results shows the bound H-dibaryon state in heavy pion region.

Potential in flavor singlet channel is getting more attractive as decreasing quark masses

Does the H-dibaryon state survive on the physical point?

Go to the SU(3) broken situation.

$\Lambda\Lambda$ and $N\Xi$ phase shifts

$\Lambda\Lambda$, N Ξ , $\Sigma\Sigma$ (I=0) ¹S₀ channel near the physical point

All diagonal element have a repulsive core ΣΣ–ΣΣ potential is strongly repulsive.
 Off-diagonal potentials are relatively strong except for ΛΛ–ΝΞ transition
 We need more statistics to discuss physical observables through this potential.

Comparison of potential matrices

Transformation of potentials

from the particle basis to the SU(3) irreducible representation (irrep) basis.

 $\begin{pmatrix} | 1 \rangle \\ | 8 \rangle \\ | 27 \rangle \end{pmatrix} = U \begin{pmatrix} | \Lambda \Lambda \rangle \\ | N \Xi \rangle \\ | \Sigma \Sigma \rangle \end{pmatrix}, U \begin{pmatrix} V^{\Lambda \Lambda} & V^{\Lambda \Lambda}_{N\Xi} & V^{\Lambda \Lambda}_{\Sigma\Sigma} \\ V^{N\Xi}_{\Lambda\Lambda} & V^{N\Xi} & V^{N\Xi}_{\Sigma\Sigma} \\ V^{\Sigma\Sigma}_{\Lambda\Lambda} & V^{\Sigma\Sigma}_{N\Xi} & V^{\Sigma\Sigma} \end{pmatrix} U^{t} \rightarrow \begin{pmatrix} V_{1} & V_{1} & V_{2} & V_{$

In the SU(3) irreducible representation basis, the potential matrix should be diagonal in the SU(3) symmetric configuration.

Off-diagonal part of the potential matrix in the SU(3) irrep basis would be an effectual measure of the SU(3) breaking effect.

Potentials in ${}^{1}S_{0}$ channel with SU(3) basis

Potential of flavor singlet channel does not have a repulsive core

Potential of flavor octet channel is strongly repulsive which reflects Pauli effect.
 Off-diagonal potentials are visible only in r<1fm region.

Interactions of decuplet baryons

SU(3) aspects of BB interaction

Alternative source of generalized baryon-baryon interactions

$N\Omega$ interaction

Octet-Decuplet interaction

Flavor symmetry aspect

Octet-Decuplet interaction can be classified as

$$8 \otimes 10 = 35 \oplus 8 \oplus 10 \oplus 27$$

Strongly attractive CMI is expected

Flavor octet dibaryon is predicted

M.Oka PRD38-298

 $N\Omega J^{p}(I) = 2^{+}(1/2)$ is considered

Easy to tackle it by lattice QCD simulation

Lowest state in J=2 coupled channel

ΝΩ-ΛΞ*-ΣΞ*-ΞΣ*

Multi-strangeness reduces a statistical noise

Wick contraction is very simple

$N\Omega$ system from quark model

T.Goldman et al PRL59(1987)627

(Quasi-)Bound state is reported with J=2, I=1/2

- Constituent quark model M.Oka PRD38(1988)298
 CMI does not contribute for this system because of no quark exchange between baryons.
 Coupled channel effect is important.
- Chiral quark model

Q.B.Li, P.N.Shen, EPJA8(2000)

Strong attraction yielded by scalar exchange

Strongly attractive S-wave effective potential in J^p(I) = 2⁺(1/2)
 Good baseline to explore S=-3 baryonic system

Decuplet-Decuplet interactions

Decuplet-Decuplet interaction

Flavor symmetry aspect

Decuplet-Decuplet interaction can be classified as

• Δ - Δ (J=3) : Bound (resonance) state was found in experiment. • Δ - Δ (J=0) [and Ω - Ω (J=0)] : Mirror of Δ - Δ (J=3) state

Decuplet-Decuplet interaction in SU(3) limit

$\Omega \Omega J^{p}(I) = 0^{+}(0)$ state in unphysical region

N_f = 2+1 full QCD with L = 3fm, $m\pi = 700 \text{ MeV}$

Short range repulsion and attractive pocket are found.
 Potential is nearly independent on "t" within statistical error.
 The system may appear close to the unitary limit.

Summary and outlook

We have investigated coupled channel hadronic interactions from lattice QCD.

We have studied exotic candidate states

- H-dibaryon channel
 - There is strongly attractive potential in flavor singlet state.
 - It is not enough statistics to calculate several observables and to discuss the fate of H-dibayon.
- NΩ state with J^p=2⁺
 - It is strongly attractive without short range repulsion.
 - It forms a bound state with about 20MeV B.E..
 - $\Omega N \Xi * \Sigma \Xi * \Lambda \Sigma * \Xi$ coupled channel calculation is necessary

• $\Delta\Delta$ and $\Omega\Omega$ states

- $\Delta\Delta$ (I=0) have strongly attractive potential
- $\Delta\Delta$ (I=3) and $\Omega\Omega$ potential have repulsive core and attractive pocket
- Both channels form (quasi-)bound state???