Quark mass dependence of H-dibaryon

Yasuhiro Yamaguchi¹

in collaboration with

Tetsuo Hyodo¹

¹YITP Kyoto University, Japan

ストレンジネス・ハドロン合同研究会 8/5 2015, KEK Tokai 、ロト・クト・ミト・ミト ミーシュペ

Outline

Quark mass dependence of the H-dibaryon

- 1. Introduction:H-dibaryon
- 2. Method: Pionless EFT
- 3. Numerical results
- 4. Summary

H-dibaryon?

Outline

Quark mass dependence of the H-dibaryon

1. Introduction:H-dibaryon

- 2. Method: Pionless EFT
- 3. Numerical results
- 4. Summary

H-dibaryon?

(E)

H-dibaryon bound state? Introduction:H-dibaryon

- H-dibaryon: R.L.Jaffe (Bag model) PRL38(1977)195
 - ▷ Flavor-singlet dihyperon with $J^P = 0^+$.
 - \triangleright Attractive color magnetic int. \rightarrow $M_{H}=2150$ MeV.

(\sim 80 MeV below $\Lambda\Lambda$)

H-dibaryon?

A B M A B M

H-dibaryon bound state? Introduction:H-dibaryon

- H-dibaryon: R.L.Jaffe (Bag model) PRL**38**(1977)195
 - > Flavor-singlet dihyperon with $J^P = 0^+$.
 - ▷ Attractive color magnetic int. $\rightarrow M_H = 2150$ MeV.
 - (\sim 80 MeV below $\Lambda\Lambda$)
- H-dibaryon from Lattice QCD (Large quark mass region)

HALQCD collaboration, NPA881(2012)28.

H-dibaryon bound state? Introduction:H-dibaryon

- H-dibaryon: R.L.Jaffe (Bag model) PRL**38**(1977)195
 - $\triangleright \text{ Flavor-singlet dihyperon with } J^P = 0^+.$
 - ▷ Attractive color magnetic int. $\rightarrow M_H = 2150$ MeV.
 - (${\sim}80$ MeV below $\Lambda\Lambda$)
- H-dibaryon from Lattice QCD (Large quark mass region)

• H-dibaryon has been studied by : Experiments.

NAGARA event: double Λ hypernuclei ⁶_{ΛΛ}He H.Takahashi *et al.*,PRL**87**(2001)212502

• H-dibaryon has been studied by : Experiments.

▷ NAGARA event: double Λ hypernuclei ${}^{6}_{\Lambda\Lambda}$ He \Rightarrow ⁴He + HH.Takahashi *et al.*, PRL**87**(2001)212502

 \Rightarrow Constraint **B**_H < 7.25 MeV (= $B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}He)$).

白 ト イヨ ト イヨ ト

• H-dibaryon has been studied by : Experiments.

▶ NAGARA event: double Λ hypernuclei ${}^{6}_{\Lambda\Lambda}$ He \Rightarrow ⁴He + HH.Takahashi *et al.*, PRL**87**(2001)212502 ⇒ Constraint **B**_H < **7.25** MeV (= $B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ He)). ▶ Belle: $\Upsilon(1S)$ and $\Upsilon(2S)$ decays B. H. Kim *et al.*, PRL**110**(2013)222002

 \Rightarrow **No peak** near the $2m_{\Lambda}$ threshold.

• H-dibaryon has been studied by : Experiments.

▷ NAGARA event: double Λ hypernuclei ${}^{6}_{\Lambda\Lambda}$ He \Rightarrow 4 He + HH.Takahashi *et al.*,PRL**87**(2001)212502

 \Rightarrow Constraint **B**_H < 7.25 MeV (= $B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}\text{He})$).

▷ Belle: \u03c8(1S) and \u03c8(2S) decays B. H. Kim *et al.*, PRL**110**(2013)222002

 \Rightarrow **No peak** near the $2m_{\Lambda}$ threshold.

STAR: ΛΛ correlation

L.Adamczyk et al., PRL114(2015)022301, K.Morita, et al., PRC91(2015)024916

 \Rightarrow Negative scattering length of $\Lambda\Lambda$ (\rightarrow No Bound state)

・ 戸 ・ ・ ヨ ・ ・ 日 ・

• H-dibaryon has been studied by : Experiments.

▷ NAGARA event: double ∧ hypernuclei ${}^{6}_{\Lambda\Lambda}$ He \Rightarrow 4 He + HH.Takahashi *et al.*,PRL**87**(2001)212502

 \Rightarrow Constraint **B**_H < 7.25 MeV (= $B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}\text{He})$).

▷ Belle: \u03c8 (15) and \u03c8 (25) decays B. H. Kim *et al.*, PRL**110**(2013)222002

 \Rightarrow **No peak** near the 2 m_{Λ} threshold.

▷ STAR: ΛΛ correlation

L.Adamczyk et al., PRL114(2015)022301, K.Morita, et al., PRC91(2015)024916

 \Rightarrow Negative scattering length of $\Lambda\Lambda$ (\rightarrow No Bound state)

No H bound state at the physical point...? Virtual state? Resonance?

Quark mass dependence of H-dibaryon

< 注入 < 注入 -

Quark mass dependence of H-dibaryon

• Bare H-state (6q state) by evaluating the NG boson loop

P. E. Shanahan et al., PRL107(2011)092004, JPS Conf.Proc.1(2014)013028

Results: Unbound at physical point

Quark mass dependence of H-dibaryon

- Bare H-state (6q state) by evaluating the NG boson loop
 - P. E. Shanahan et al., PRL107(2011)092004, JPS Conf.Proc.1(2014)013028

Results: Unbound at physical point

• Chiral effective field theory · · · BB scattering

J. Haidenbauer and U. G. Meissner, PLB706(2011)100, NPA881(2012)44

Results: Unbound at physical point

Quark mass dependence of H-dibaryon

- Bare H-state (6q state) by evaluating the NG boson loop
 - P. E. Shanahan et al., PRL107(2011)092004, JPS Conf.Proc.1(2014)013028

Results: Unbound at physical point

- \rightarrow **But**, couplings to **BB channels** are not considered.
- Chiral effective field theory ··· BB scattering

J. Haidenbauer and U. G. Meissner, PLB706(2011)100, NPA881(2012)44

Results: Unbound at physical point \rightarrow **But, 6q state** is not considered.

Our work

Purpose: Quark mass dependence of H-dibaryon is studied.

Method: the pionless effective field theory (EFT) with two baryon channels and bare H-dibaryon field.

D. B. Kaplan, NPB 494(1997)471, E.Braaten, et al., Annals, Phys. 323(2008)1770

• Parameters are fitted by the Lattice QCD.

We will obtain

- Binding energy
- Structure of H-dibaryon
- BB interaction

• ...

Our work

Purpose: Quark mass dependence of H-dibaryon is studied.

Method: the pionless effective field theory (EFT) with two baryon channels and bare H-dibaryon field.

D. B. Kaplan, NPB 494(1997)471, E.Braaten, et al., Annals, Phys. 323(2008)1770

• Parameters are fitted by the Lattice QCD.

We will obtain

- Binding energy → Scattering length (Today's talk)
- Structure of H-dibaryon
- BB interaction

• ...

We report our current status.

Method: pionless EFT

 \triangleright Compare Length scale ℓ_{B} with Pion wavelength λ_{π}

If $\ell_B = (2\mu B)^{-1/2} \gg \lambda_{\pi} = 1/m_{\pi}$, short range forces are not relevant for the bound states.

 \Rightarrow *BB* interaction \rightarrow **Contact term**

Table : ℓ_B vs λ_{π} on Lattice

Data	ℓ_B	λ_{π}	λ_{π}/ℓ_B
HAL-1	0.59	0.17	0.29
HAL-2	0.72	0.19	0.27
HAL-3	0.77	0.24	0.31
HAL-4	0.88	0.29	0.33
HAL-5	1.14	0.42	0.37
NPL	1.55	0.51	0.33

Method: pionless EFT

 \triangleright Compare Length scale ℓ_{B} with Pion wavelength λ_{π}

If $\ell_B = (2\mu B)^{-1/2} \gg \lambda_{\pi} = 1/m_{\pi}$, short range forces are not relevant for the bound states.

 \Rightarrow *BB* interaction \rightarrow **Contact term**

Table :	ℓ_B	VS	λ_{π}	on	Lattice \rightarrow	λ_{π}	$/\ell_B$	<	1
---------	----------	----	-----------------	----	-----------------------	-----------------	-----------	---	---

Data	ℓ_B	λ_{π}	λ_{π}/ℓ_B
HAL-1	0.59	0.17	0.29
HAL-2	0.72	0.19	0.27
HAL-3	0.77	0.24	0.31
HAL-4	0.88	0.29	0.33
HAL-5	1.14	0.42	0.37
NPL	1.55	0.51	0.33

★ E ► ★ E ► = E

Diagrams and Parameters Method: pionless EFT

> Four baryon contact term and bare H-dibaryon field

э

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Diagrams and Parameters Method: pionless EFT

> Four baryon contact term and bare H-dibaryon field

• Coupling constants: λ_0 and \mathbf{g}_0 (with $d_i \rightarrow$ flavor degeneracy of the two baryon states.)

$$i, j = 1, 2, 3 = \Lambda\Lambda, \ N\Xi, \ \Sigma\Sigma$$

$$d_1 = \frac{1}{\sqrt{8}}, \ d_2 = \frac{2}{\sqrt{8}}, \ d_3 = \sqrt{\frac{3}{8}}, \quad \sum_{i=1}^3 d_i^2 = 1$$
Mass difference $\nu_0 = M_H^{(0)} - 2M_B = \nu_0^a + \nu_0^b M_B$

$$M_B = \frac{1}{8} (2M_N + M_\Lambda + 3M_\Sigma + 2M_\Xi)$$

Parameters λ_0 , \mathbf{g}_0 and $\nu_0^{\mathrm{a,b}}$ are fitted by the Lattice data.

۲

Scattering amplitudes Method: pionless EFT

• Lippmann-Schwinger eq. for flavor-singlet $\Lambda\Lambda - N\Xi - \Sigma\Sigma$ = + + + + + \Rightarrow Scattering amplitude (SU(3)_f breaking) $f_{ii}(E) = -\frac{\mu_i}{4\pi} d_i^2 \left[\left(\lambda_0 + \frac{g_0^2}{E - \nu_0 + i0^+} \right)^{-1} + \sum_{\ell=1}^3 d_\ell^2 \frac{\mu_\ell}{\pi^2} \left(\Lambda - \kappa_\ell \tan^{-1} \frac{\Lambda}{\kappa_\ell} \right) \right]^{-1} \right]$ $\mu_i = \text{reduced mass}, \quad \kappa_\ell = \sqrt{-2\mu_\ell(E - \Delta_\ell)},$ $\Delta_1 = 0, \quad \Delta_2 = M_N + M_{\Xi} - 2M_{\Lambda}, \quad \Delta_3 = 2M_{\Sigma} - 2M_{\Lambda}$ Momentum cutoff $\Lambda \sim 400 \text{ MeV} (m_{\pi})$

⇒ Binding energy is obtained as **poles of the amplitudes**.

ъ

Scattering amplitudes Method: pionless EFT

• Lippmann-Schwinger eq. for flavor-singlet $\Lambda\Lambda - N\Xi - \Sigma\Sigma$ = + + + + + \Rightarrow Scattering amplitude (SU(3)_f breaking) $f_{ii}(E) = -\frac{\mu_i}{4\pi} d_i^2 \left| \left(\lambda_0 + \frac{\mathbf{g}_0^2}{E - \nu_0 + i0^+} \right)^{-1} + \sum_{i=1}^3 d_\ell^2 \frac{\mu_\ell}{\pi^2} \left(\mathbf{\Lambda} - \kappa_\ell \tan^{-1} \frac{\mathbf{\Lambda}}{\kappa_\ell} \right) \right|^{-1}$ $\mu_i = \text{reduced mass}, \quad \kappa_\ell = \sqrt{-2\mu_\ell(E - \Delta_\ell)},$ $\Delta_1 = 0, \quad \Delta_2 = M_N + M_{\Xi} - 2M_{\Lambda}, \quad \Delta_3 = 2M_{\Sigma} - 2M_{\Lambda}$ Momentum cutoff $\Lambda \sim 400 \text{ MeV} (m_{\pi})$

⇒ Binding energy is obtained as **poles of the amplitudes**.

ъ

Parameter fitting Numerical results

• Parameters λ_0 , g_0 and $\nu_0^{a,b}$ are fitted by the Lattice data.

	Data	$B(\sigma_{ m sta})(\sigma_{ m sys})$ [MeV]	M_{Λ} [MeV]
$SU(3)_f$ limit	HAL-1	49.1 (3.4)(5.5)	2274
	HAL-2	37.2 (3.7)(2.4)	2031
	HAL-3	37.8 (3.1)(4.2)	1749
	HAL-4	33.6 (4.8)(3.5)	1484
	HAL-5	26.0 (4.4)(4.8)	1161
$SU(3)_f$ breaking	NPL	13.2 (1.8)(4.0)	1170
Physical point	(Sasaki-san)	???	1116
Physical point	(Sasaki-san)	???	1116

Table. H-dibaryon binding energy from Lattice.

HAL NPA881(2012)28, NPL PRD85(2012)054511

 ${\, \bullet \, }$ Parameters which minimize χ^2

$$\chi^2 = \sum_i \frac{[B_i^{Lattice} - B_i(\lambda, g^2, \nu^a, \nu^b)]^2}{\sigma_{\mathrm{sta},i}^2 + \sigma_{\mathrm{sys},i}^2}$$

• Parameters λ_0 , g_0 and $\nu_0^{a,b}$ are fitted by the Lattice data.

	Data	$B(\sigma_{ m sta})(\sigma_{ m sys})$ [MeV]	M_{Λ} [MeV]
$SU(3)_f$ limit	HAL-1	49.1 (3.4)(5.5)	2274
	HAL-2	37.2 (3.7)(2.4)	2031
	HAL-3	37.8 (3.1)(4.2)	1749
	HAL-4	33.6 (4.8)(3.5)	1484
	HAL-5	26.0 (4.4)(4.8)	1161
$SU(3)_f$ breaking	NPL	13.2 (1.8)(4.0)	1170
Physical point	(Sasaki-san)	???	1116

Table. H-dibaryon binding energy from Lattice.

HAL NPA881(2012)28, NPL PRD85(2012)054511

 ${\, \bullet \, }$ Parameters which minimize χ^2

$$\chi^2 = \sum_{i} \frac{[B_i^{Lattice} - B_i(\lambda, g^2, \nu^a, \nu^b)]^2}{\sigma_{\mathrm{sta}, i}^2 + \sigma_{\mathrm{sys}, i}^2}$$

Subject: Quark mass dependence of the H-dibaryon

- Baryon-baryon scattering $(\Lambda\Lambda N\Xi \Sigma\Sigma)$ is discussed by the pionless EFT.
- The scattering amplitude described by the four baryon contact term and the coupling to the bare H-dibaryon is studied.
- The coupling constants of the EFT is fitted by the Lattice QCD results.
- The negative scattering length at the physical point is obtained.

Thank you for your kind attention.

・ 同 ト ・ ヨ ト ・ ヨ ト