Charmed baryon experiment at the J-PARC high-momentum beam line

K. Shirotori for the J-PARC E50 collaboration

Research Center for Nuclear Physics (RCNP) Osaka University

KEK理論センター JPARC分室、JAEA先端基礎研究センター共催研究会 「チャームハドロンの構造と相互作用」

Contents

- Introduction
 - Experiment at High-momentum beam line
- Physics motivation
 - Charmed baryons
 - Charm and strangeness
 - Other channels
- Summary

Introduction

Overview of experiment

J-PARC & Hadron Facility

6 **Hadron Facility** $K/\pi/p_{bar}$ beam: ~2.0 GeV/c **Mass-separated** secondary beams: < 2 GeV/c Intensity $> 10^7$ /pulse K1.8 58 m **K1.8BR** K_L⁰ beam K/ π /p_{bar} beam: ~1.0 GeV/c KI **K1.**] **K1.1BR 30 GeV** K/ π /p_{bar} beam: ~1.1 GeV/c **Proton** 56 m Beam $K/\pi/p_{bar}$ beam: ~0.8 GeV/c

High-momentum beam line

Construction by 2018 Primary proton beam ⇒ 30 GeV

High-p

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam
- High-resolution beam: ∆p/p ~ 0.1%(rms)
 - Momentum dispersive optics method

High-momentum beam line for 2^{ndary} beam

- High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c)
 - Unseparated beam
- High-resolution beam: Δp/p ~ 0.1%(rms)
 - Momentum dispersive optics method

Experiment

- $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$ reaction @ 20 GeV/c
 - 1) Missing mass spectroscopy

$$D^{*-} \to \overline{D}{}^0 \pi_s^- \to K^+ \pi^- \pi_s^- : D^{*-} \to \overline{D}{}^0 \pi_s^- (67.7\%), \overline{D}{}^0 \to K^+ \pi^- (3.88\%)$$

- 2) Decay measurement
- Decay particles (π^{\pm} & proton) from Y_c^*

Production cross section

* Assumed production cross section: $\sigma \sim 1 \text{ nb}$

- π^- + p $\rightarrow \Lambda_c^+$ + D^{*-} reaction @ 13 GeV/c: σ < 7 nb (BNL data)

- High-rate beam & High-rate detector system
 - Beam intensity: 6×10⁷/2.0 sec spill (~1 MHz/mm)

Charmed baryon spectrometer

Large Acceptance Multi-Particle Spectrometer

Charmed baryon spectrometer

High-speed DAQ system * On-line event reconstruction by using PC cluster

• Momentum analysis by DCs and fiber tracker

- Acceptance
 - Momentum: 0.2–20 GeV/c
 - Angle: < 40°
 - \Rightarrow D^{*}: 50–60%,

Decay particle: ~80%

• Wide angular coverage

Resolution

- $\Delta p/p = 0.2\% @ 5 GeV/c$
- $\Delta M_{Ac^*} = 10 \text{ MeV} @ 2.8 \text{ GeV/c}^2$

Physics motivation

. . .

Charmed baryon

Charmed baryon spectrum: "Excitation Mode"

Heavy Quark: Weak color-magnetic interaction \Rightarrow "q-q" isolated and developed: "q-q + Q"

Decay property

• Decay measurement: $\Gamma_{\pi\Sigma c} \Leftrightarrow \Gamma_{ND}$ - $\pi^- + \Sigma_c^{++}, \pi^+ + \Sigma_c^{0}$ - $\mathbf{p} + \mathbf{D}^0$

Production cross section

Hadronic production: $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$

 D^* exchange at a forward angle

Production cross section ⇒ Overlap of wave function * charm and q-q (spectator)

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_{-} \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

Spin/Parity of Y_c*
 Momentum transfer (q_{eff})

 $I_L \sim (q_{eff}/A)^L \exp(-q_{eff}^2/2A^2)$

A: (baryon size parameter)⁻¹

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori Prog. Theor. Exp. Phys. 103D01 (2014).

Production cross section

Expected spectra

Known Mass & Width in PDG

1800 counts @ N_{pot} = 8.64 × 10¹³ (100 days, ε_{total} = 0.5)

- $\Lambda_c(g.s.)$: 1 nb production cross section
 - Production ratio for excited states
- Background level and reductions were precisely studied.

* Achievable sensitivity of 0.1–0.2 nb: $(3\sigma \text{ level}, \Gamma < 100 \text{ MeV})$

Expected spectra

λ-mode excitation doublets: Production enhanced

- \Rightarrow Internal structure of charmed baryon
 - **Decay analysis** also performed: $\Gamma_{\pi\Sigma c} \Leftrightarrow \Gamma_{pD}$

*****Diquark correlation: Excitation mode

HQ doublet

Charmed baryon spectroscopy

J-PARC E50 experiment

- Investigate charmed baryons
 by Missing Mass spectroscopy
- Systematic measurement
 - Excited states search
 - Excitation energy
 - Decay property
 - Production cross section
- \Rightarrow Diquark correlation
 - Excitation mode

Effective degree of freedom

- 1st level: Quark
 - Bare quark
 - Lattice QCD
- 2nd level: Constituent
 - Constituent quark, diquark, hadron molecule
 Colored Quasi-Particle: CQP
 - \Rightarrow Need pictures of constituents for understanding

- 3rd level: Hadron
 - Objects which we can observe.

Effective degree of freedom

- 1st level: Quark
 - Bare quark
 - Lattice QCD: How to establish CQP ?
- 2nd level: Constituent
 - Constituent quark, diquark, hadron molecule
 Colored Quasi-Particle: CQP
 - \Rightarrow Need pictures of constituents for understanding
 - Effective theory: How to describe by CQP ?
- 3rd level: Hadron
 - Objects which we can observe.

24

Systematic study

Charm and Strange

Strangeness baryons

* Yield: ~10⁵ /day @ 1 μb

- 4 g/cm², 6×10⁷/spill, 50% acceptance, 50% efficiency (DAQ, PID, Analysis)

•
$$\Lambda, \Sigma^{0}$$
 baryons: $\sigma \sim 1-100 \ \mu b$
- $\pi^{-} + p \rightarrow \Lambda^{*}, \Sigma^{*0} + K_{S}^{0}, (K_{S}^{0} \rightarrow \pi^{+} + \pi^{-})$
- $\pi^{-} + p \rightarrow \Lambda^{*}, \Sigma^{*0} + K^{*0}, (K^{*0} \rightarrow K^{+} + \pi^{-})$
- $\pi^{+} + p \rightarrow \Sigma^{*+} + K^{*+}, (K^{*+} \rightarrow K_{S}^{0} + \pi^{+})$

•
$$\Xi^-$$
 baryons: $\sigma \sim 0.1-10 \ \mu b$
- $K^- + p \rightarrow \Xi^* + K^+, K^{*0}$
- $\pi^- + p \rightarrow \Xi^* + K^+ + K^{*0}, (K^{*0} \rightarrow K^+ + \pi^-)$
 \circ Strangeness tagging $\Rightarrow K^*$ detection

• Ω^- baryons: $\sigma \sim 0.01-1 \ \mu b$ - $K^- + p \rightarrow \Omega^* + K^{*0} + K^+$, $(K^{*0} \rightarrow K^+ + \pi^-)$ \circ Strangeness tagging $\Rightarrow K^*$ detection

***** Ξ and Ω data are very poor !

Strangeness baryons

* Yield: ~10⁵ /day @ 1 μb

- 4 g/cm², 6×10⁷/spill, 50% acceptance, 50% efficiency (DAQ, PID, Analysis)

•
$$\Xi^-$$
 baryons: $\sigma \sim 0.1-10 \ \mu b$

$$- \mathbf{K}^- + \mathbf{p} \rightarrow \mathbf{\Xi}^* + \mathbf{K}^+, \mathbf{K}^{*0}$$

$$- \pi^{-} + \mathbf{p} \rightarrow \Xi^{*} + \mathbf{K}^{+} + \mathbf{K}^{*0}, (\mathbf{K}^{*0} \rightarrow \mathbf{K}^{+} + \pi^{-})$$

• Strangeness tagging
$$\Rightarrow K^*$$
 detection

•
$$\Omega^-$$
 baryons: $\sigma \sim 0.01-1 \ \mu b$
- $K^- + p \rightarrow \Omega^* + K^{*0} + K^+, (K^{*0} \rightarrow K^+ + \pi^-)$
 \circ Strangeness tagging $\Rightarrow K^*$ detection

***** Ξ and Ω data are very poor !

Strangeness sector

Hyperons: Λ^*, Σ^* states π -induced \mathbf{Y}^* production $-\pi^- + \mathbf{p} \rightarrow \Lambda^*, \Sigma^{*0} + \mathbf{K}^{*0}$ $-\pi^+ + \mathbf{p} \rightarrow \Sigma^{*+} + \mathbf{K}^{*+}$ * Missing mass & decay analysis $- \Gamma_{\pi\Sigma} \Leftrightarrow \Gamma_{KN}$ **M**_O dependence of "q-q + Q" - Y_c^* and Y^* 1

 λ/ρ mixing

$$- \Psi = \mathbf{C}_{\lambda} | (\mathbf{O})^{q-q} > + \mathbf{C}_{\rho}$$

- **Production rate of Y***
- \Rightarrow Favor λ mode
- $\Leftrightarrow \rho$ mode through λ/ρ mixing

 \mathbf{K}^*

 Λ^*, Σ^{*0}

Excitation spectrum

• L=1 excited states: Confinement & spin-spin interaction

Excitation spectrum

• L=1 excited states: Confinement & spin-spin interaction

Excitation spectrum

• L=1 excited states: Confinement & spin-spin interaction

From experiments

- Information of λ/ρ mixing probability
 - Production ratio
- Decay branching ratio
 - $\Gamma(NK_{bar})/\Gamma(\pi\Sigma)$
- Reaction systematics
 - t-channel production
 - $\circ \mathbf{KN} \Leftrightarrow \mathbf{DN} \text{ vertex}$
 - Production ratio
 - Reflect q-q

- **Ξ**: **q** + **QQ** system
 - Almost no information for excited states
 - $\pi \Xi$ -KY molecule: M = 1.6–1.7 GeV ?
- Ω: QQQ system
 - Almost no information for excited states
 - Much simpler system ?
 - $\pi\pi\Omega$ -K Ξ molecule: M = 1.8-1.9 GeV ?

Other channels

• • •

Pentaquark state

Other channels

- Ξ_c baryons - $\pi^- + p \rightarrow \Xi_c^{0} + D^{*-} + K^+$ Automatically taken by experimental conditions
- Exotic channels
 - $\pi^- + p \rightarrow D_{bar}N (c_{bar}d \ udd) + D^{*+}$
 - $\pi^- + p \rightarrow \beta^{++}(cs_{bar}uud) + D^{*-} + K^-$

- $\circ \pi^- + p \rightarrow \beta^+ (cs_{bar}udd) + D_S^- (\phi \pi^- \rightarrow K^+ K^- \pi^-, 4.5\%)$
- P_c baryons - $\pi^- + p \rightarrow P_c^{0}$

 $| Y_c^{*+} + D^{*-}$ channels and J/ ψ detection

- Drell-Yan channels
 - $-\pi^- + \mathbf{p} \rightarrow \mathbf{n} + \mu^+ + \mu^-$
 - $K^- + p \rightarrow Y^0 + \mu^+ + \mu^-$

Exclusive DY production \Rightarrow GPD of N^{*}, Δ^* , Y^{*}

Ξ_c production

- Diquark correlation: s-q
 - Weak diquark
 - q-q can be applicable ?
 o q-Q-Q system ?
 - How about Belle data ?
- Production mechanism
 - Completely unknown
 - Complicated ?
 - \circ c-c_{bar} + s-s_{bar} production
 - **From** $Y^*(Y_c^*)$?
 - $\circ \mathbf{qqs} \rightarrow \mathbf{qss} + \mathbf{s}_{\mathbf{bar}}\mathbf{q}$
 - $\circ \mathbf{qqc} \rightarrow \mathbf{qcs} + \mathbf{s_{bar}q}$
 - ***** ss_{bar} production from q-q
 - \Rightarrow Information of q-q correlation ?
 - $\circ~$ Decay study of Y^{*} and Y_{c}^{*}
- Absolute decay branching ratio of Ξ_c
 - Basic information

Pentaquark states

 $P_{c}^{+}(cc_{bar} uud): (M, \Gamma)(J^{P}) = (4380, 205)(3/2^{-?}) \& (4450, 40)(5/2^{+?})$

- P_c prediction
 - $\sqrt{s} ~ 4.4 ~ GeV ⇒ p_π ~ 10 ~ GeV/c$
- $\pi^- + p \rightarrow P_c^{\ 0} (cc_{bar} udd)$ - $\pi^- + p \rightarrow P_c^{\ 0} \rightarrow J/\psi + n$ - $\pi^- + p \rightarrow P_c^{\ 0} \rightarrow Y_c^{\ *+} + D^{*-}$
- Production information
 - Cross section
 - Decay channel
 Γ(J/ψN) ⇔ Γ(Y_c*D*)
 * Hidden charm ⇔ Open charm
- Nuclear medium effect
 - W/ nuclear target
- Analogue states: P_s^0 (ss_{bar} udd) - ϕ + n (>1.96) \Leftrightarrow Y^{*} + K^{*} (>2.01)

***** What can we understand from those measurements ?

Summary

- Experiment at the J-PARC high-p beam line
 - Inclusive measurements by missing mass spectroscopy with multi-purpose spectrometer system
- Charmed baryon spectroscopy
 - Essential way to understand hadron structure
 - Diquark correlation: λ and ρ mode excitation
- Systematic study of baryons at J-PARC
 - Excitation energy, production, decay
 - With strangeness sector: q-q + Q, q + Q-Q, QQQ
- Other study channels
 - Ξ_c , exotic and DY channels
 - Pentaquark w/ cc_{bar}