Study of charmed baryons at Belle (2) 1

Y. Kato KMI, Nagoya University

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Physics of charmed baryons

Mass of the charm quark is ~1.5 GeV. This is much heavier than...

 Mass of the u,d,s quarks (300-500 MeV) spin-spin interaction ∝ 1/m₁m₂
 Di-quark correlation in from single charmed baryons. Is the di-quark really good degree of freedom?

2. <u>Momentum of quarks inside the baryon</u> radius ~1 fm → 200MeV/c.
 →Non-relativistic quark model is a good approximation.
 QQ potential from doubly charmed baryon.
 (Similar to QQ^{bar} potential by charmonium spectroscopy)

Observed charmed baryons

- More than 20 charmed baryons has been observed.
- How to extract physics from these states?
- What is missing from experimental side?

2015/8/6

What is still missing? = Contents of this talk

Spin/parity not known for almost of excited states.

- Belle has capability to measure spin/parity of some of them.

Still many 1, 2 star states.

-Especially in many Ξ_c . Reported only by BaBar. Confirmation by Belle is necessary.

Decay modes, relative branching ratio.

- There may exists unknown decay modes.

•No doubly charmed baryons found so far. -Belle? LHCb? any other experiment?

I review recent works related to these things.

Spin/parity measurement

Importance of the spin/parity measurement

• In the first excitation, both ρ and λ mode should be $J^{P}=1/2^{-1}$ and $M(\rho)>M(\lambda)$

• $\Lambda_c(2595)^+ \equiv_c(2790)^+$ are candidates of λ mode excitation.

• To identify ρ mode excitation and see the mass difference from λ mode is a good test of di-quark picture.

2015/8/6

Spin-parity measurement of $\Lambda_c(2880)^+$ 7

On going analysis: $\Lambda_c / \Sigma_c (2765)^+$

Prediction from coupled channel approach

hep-ph:1205.2275

Coupled channel calculation in I=0 channel. $\Lambda_c(2595)^+$ is clearly seen.

Amplitude in I=1 channel

If the scenario is correct, it must be...

• Isospin = 1 (By searching for isospin triplet) • $J^{p}= 1/2^{-}$ (The same analysis as $\Lambda_{c}(2880)$)

Confirmation of 1 star, 2 star states

Charmed strange baryons (Ξ_c **)**

u/d-s diquark system!

By searching for ρ mode excitation, we can perform "di-quark spectroscopy" Interaction of u/d-s quark can be studied.

Excited Ξ_c^+ in $\Lambda_c^+K^-\pi^+$ by Belle and BaBar 12

 BaBar: Confirmed them and reported another two states. Ξ_c(3055)→2star, Ξ_c(3123)→1star.

M(Σ_c(2455)⁺⁺K⁻) by Belle

Phys. Rev. D 89, 052003

 Structure near 3055 MeV/c² is seen in addition to Ξ_c(2980), Ξ_c(3080).
 Significance of 6.6 σ.

Mass/width of Ξ_c^+ (3055)

	Belle	Babar
Mass (MeV/c ²)	$3058.1 \pm 1.0 \pm 2.1$	$3054.2 \pm 1.2 \pm 0.5$
Width (MeV)	$9.7 \pm 3.4 \pm 3.3$	$17 \pm 6 \pm 1.1$

Consistent result with BaBar with 6.8 σ

M(Σ_c*(2520)⁺⁺K⁻) by Belle

Structure near 3123 MeV/c² is not seen

- Signal PDF: Gaussian convoluted Breit Wigner.
 - Mean, width was fixed from BABAR's result
- Yield = $8.2 \pm 22.0 \rightarrow$ Measurement of upper limit

$\sigma \times Br(\Lambda_c^+ \rightarrow pK^-\pi^+) \text{ of } \Xi_c^+(3123)$ < 0.34 fb @95%C.L \Leftrightarrow 1.6±0.6±0.2 fb by BaBar <u>Result of the BaBar was not confirmed...</u>

Comparison of Λ_c^+ **and** Ξ_c^- **or** Σ_c^- **and** Ξ_c^- **15**

Jp	Λ_{c}^{+}	Ξ _c	ΔM(Mev/c²)	Note	
1/2+	Λ _c (2286) ⁺	Ξ _c (2470)	181	ground state	
1/2-	Λ _c (2595) ⁺	Ξ _c (2790)	194	Λ(1405) like	spin0
3/2-	Λ _c (2625) ⁺	Ξ _c (2815)	188	Λ(1520) like	di-quark
??	Λ _c (2765) ^{+?}	Ξ _c (2980)?	205	lsospin not determined	
5/2+	Λ _c (2880) ⁺	Ξ _c (3080)?	200		
Jp	Σ _c	Ξ,	ΔM(Mev/c²)	Note	
1/2+	Σ _c (2455)	Ξ _c (2575)	120	ground state	spin1
3/2+	Σ _c (2520)	Ξ _c (2645)	125	Σ(1385) like	di-quark
??	Σ _c (2800)	??			

• The mass difference of Λ_c and Ξ_c is ~200 MeV/c², Σ_c and Ξ_c' is ~120 MeV

 $\Xi_{c}(3055)$ has no corresponding states in Λ_{c}/Σ_{c}

2015/8/6

Corresponding state just not found? 16

Production rate of hadrons in e⁺e⁻ collision is known to lie on the exponential curve. If corresponding state in Λ_c or Σ_c exists, experimentally much easier to find.

- Unfortunately, statistics of $\Xi_c(3055)$ is not enough to measure spin.
- Relative branching fraction is useful to distinguish λ/ρ modes.
- All the Ξ_c^* are observed in (charm baryon) + (light meson) final states. $\Lambda_c^+ \Sigma_c \Xi_c \Xi_c'... \pi, K$
- How about the (light baryon) + (charm meson) ?

$$\longrightarrow$$
 study $\Lambda D!$

M(ΛD⁺) distribution

• Peaks corresponds to $\Xi_c(3055)^+$, $\Xi_c(3080)^+$.

- **D⁺ sideband** No peak structure in D⁺ sideband region and wrong-sign ΛD^- combination.
 - Significance of the peaks are: 11.7σ for Ξ_c(3055)⁺ and 4.7σ for Ξ_c(3080)⁺.
 - Further confirmation for $\Xi_c(3055)^+$
 - Most precise mass/width for Ξ_c(3055)⁺ and consistent with previous measurements.

	Ξ _c (3055)⁺	Ξ _c (3080) ⁺
Mass(MeV/c ²)	$3055.7 \pm 0.4 \pm 0.4$	$3079.6 \pm 0.6 \pm 0.7$
Width(MeV)	$7.1 \pm 1.2 \pm 1.8$	$4.0 \pm 1.5 \pm 1.0$

M(ΛD⁰) distribution

• Sum of three D⁰ decay modes.

• Peaks corresponds to $\Xi_c(3055)^0$, $\Xi_c(3080)^0$.

 No peak structure in D⁰ sideband region and wrong-sign D^{0bar}Λ combination.

• Significance of the peaks are: 7.6 σ for $\Xi_c(3055)^0$ and 2.6 σ for $\Xi_c(3080)^0$.

• First observation of E_c(3055)⁰!

	Ξ _c (3055) ⁰	Ξ _c (3080) ⁰
Mass(MeV/c ²)	3059.7±0.6±0.5	$3079.6 \pm 0.6 \pm 0.7$
Width(MeV)	$7.4 \pm 1.9 \pm 3.4$	$4.4 \pm 1.8 \pm 1.9$

Discussion

Comparison with prediction by chiral quark model is inconsistent.

• $\Xi_c(3055)/(3080)$ can decay into both of (charm baryon) + (light meson) and (light baryon) + (charm baryon)

$$\Sigma_{c}$$
 K^{-} Λ D

Naively thinking,

 λ mode \rightarrow (charm baryon) + (light meson)

 ρ mode \rightarrow (light baryon) + (charm baryon)

Both ρ and λ mode excitation??

Doubly charmed baryons

Doubly charmed baryons

- -Ground state still not established.
- Predicted mass: ~3.6 GeV/c²
- Λ_c⁺K⁻π⁺ and Ξ_c⁰π⁺ are candidate of decay modes
- Selex reported in Λ_c⁺K⁻π⁺ but not supported by other experiments
- Study with Belle full statistics.
 Phys. Rev. D 89, 052003
- Significance from -2ln(L/L(0))
 Fit the spectrum with/without signal
- Less than 3σ in 3.2-4.0 GeV/c².
- Upper limit on

 $\sigma(e^+e^- \rightarrow \Xi_{cc}^+ X) \times Br(\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+)$

Belle	4.1-25.0 fb (depends on mass)
Theory	3.5 fb, 11.5 fb (assuming Br=5%)

Comparable with some of the predictions

Result of Ξ_{cc}^{+} search: $\Xi_{c}^{0}\pi^{+}$

Data Signal MC (assuming 500 fb⁻¹ and 5% for branching fractions.)

Phys. Rev. D 89, 052003

Simultaneous fit with fixing signal yield ratio.
3.2σ for 3.553 GeV/c² but probability to observe a peak with significance>3.2 in this the mass range of 3.2-4.0 GeV is 26%.

95% UL of $\sigma(e^+e^- \rightarrow \Xi_{cc}X) \times Br(\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+) \times Br(\Xi_c^+ \rightarrow \Xi^- \pi^+)$

Belle	0.076-0.35 fb (depends on mass)
Theory	0.18 fb, 0.5 fb (assuming Br=5%)

Comparable with some of the predictions

Search for Ξ_{cc}^+ at LHCb

- Search for Ξ_{cc}^+ through $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$, $\Lambda_c^+ \to p K^- \pi^+$
 - Dataset: 0.65 ${
 m fb}^{-1}$ of 2011 data
- For signal yield construct δm quantity
 - $\delta m = m(\Lambda_c^+ K^- \pi^+) m(\Lambda_c^+) m(K^-) m(\pi^+)$

Slide at Hadron2013

arXiv:1310.2538

No significant signal observed

•Cross section of double charm in pp is much higher than e⁺e⁻.

•Require Ξ_{cc} fly in order to reduce background \rightarrow Loss large signal, too. 2015/8(#ifetimes of charm hadrons are shorter than bottom hadrons).

Liang Zhong

- Set upper limits for the production cross-section ratio R relative to Λ_c^+ $R = \frac{\sigma(\Xi_{cc}^+) \mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \qquad \text{arXiv:1310.2538}$
- Mass and lifetime unknown: upper limits given as a function of δm, for 5 different lifetime hypotheses

Hadron 2013, Nara

Prediction: ~200 fs arXiv:hep-ph/9901323

Study of double charm production in progress

• Production mechanism of double charm is poorly known. \rightarrow predicted cross section for Ξ_{cc} is not reliable.

- O. Seon in Nagoya University is working on the elementary DD (D⁰D⁰, D⁰D⁺, D⁺D⁺ etc) production at Belle.
 - \rightarrow Baseline for the double charm production in e⁺e⁻ collision

Summary

27

- Spin/parity, isospin measurement - $\Lambda_c(2880)$ is a good example. $\Lambda_c/\Sigma_c(2765)$ on going.
- Confirmation of 1 star, 2 star states - $\Xi_c(3055)$ confirmed but not for $\Xi_c(3123)$. No corresponding states in Λ_c , Σ_c
- Relative branching ratio $-\Sigma_c \pi$ and ΛD for $\Xi_c(3055)$. Input from theorist is necessary.
- Double charm
 Still no doubly charmed baryons
 -LHCb also fails..
- Prospect for Belle II
 - -50 times higher integrated luminosity compared with Belle.
 - -Physics run starts from 2017 (without vertex detector), 2018 (with full Belle II). -New charmed baryons, new decay modes, spin/parity measurements,
 - and doubly charmed baryons. Stay tuned!