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Introduction: compositeness of hadrons
Near-threshold bound state

Near-threshold resonance

New things:

Summary

Contents

S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

Y. Kamiya, T. Hyodo, in preparation

NNd

πΣcΛc(2595)
- reformulation with effective field theory
- interpretation of complex compositeness
- quasi-bound state (coupled-channel) —> next talk
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Introduction: compositeness of hadrons

Various excitations of baryons
conventional exotic

en
er

gy

internal 
excitation

B
M

qq̄ pair 
creation

multiquark hadronic
molecule

|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

Physical state: superposition of 3q, 5q, MB, ...

Is this relevant strategy?

Exotic structure of hadrons
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Introduction: compositeness of hadrons

Decomposition of hadron “wave function”
|⇤(1405) i = N3q|uds i+N5q|uds qq̄ i+NK̄N | K̄N i+ · · ·

- Basis must be orthogonal with each other.

- The coefficients must be real and positive.
hudsqq̄ | K̄N i 6= 0 huds |udsqq̄ i 6= 0

- NX = probability?

|⇤(1405) i = ? complex weight NX for unstable particles

Conditions for “probability”

Questions:
- What is the appropriate basis?
- How can we interpret the complex weights?

Ambiguity of definition of hadron structure
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Elementary/composite nature of bound states near the lowest 
energy two-body threshold

composite Xelementary Z

- orthogonality <— eigenstates of bare Hamiltonian
- normalization <— eigenstate of full Hamiltonian
- model independence <— low-energy universality

* “Elementary” stands for anything other than the composite 
channel of interest (missing channels, CDD pole, …).

- uududd - NN
- ΔΔ
- ΝN(d-wave)

- uududduu ̅
- …

(s-wave)

Strategy
Near-threshold bound state
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Coupled-channel Hamiltonian (bare state + continuum)

Near-threshold bound state

- Bound state normalization + completeness relation
h | i = 1 1 = | 0 ih 0 |+

Z
d3q| q ih q |

Z, X: real and nonnegative —> probabilistic interpretation

bare state 
contribution

1 =

����h |
✓
| 0 i
0

◆����
2

+

Z
d3q

����h |
✓

0
| q i

◆����
2

⌘ Z +X

continuum
contribution

 
M0 V̂

V̂ p2

2µ

!
| i = E| i, | i =

✓
c(E)| 0 i
�E(p)|p i

◆

elementariness (field 
renormalization constant)

compositeness

Compositeness and elementariness
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Near-threshold bound state

Z(B) =
1

1� d
dE

R |h 0 |V̂ | q i|2
E�q2/(2µ)+i0+ d

3q
���
E=�B

⌘ 1

1� ⌃0(�B)

In general, Z is model dependent (~ potential, wave function)
⌃(E) ⇠

- Z can be calculated by employing models.

November 20, 2013 13:50 WSPC/139-IJMPA S0217751X13300457

Structure and Compositeness of Hadron Resonances

Table 1. Field renormalization constant Z of the hadron resonances evaluated on the resonance
pole. The momentum cutoff qmax is chosen to be 1 GeV for the ρ(770) and K∗(892) mesons,55,59

0.5 GeV for the ∆(1232) baryon, and 0.45 GeV for the Σ(1385), Ξ(1535), Ω baryons.60

Baryons Z |Z| Mesons Z |Z|

Λ(1405) higher pole (Ref. 58) 0.00 + 0.09i 0.09 f0(500) or σ (Ref. 58) 1.17 − 0.34i 1.22

Λ(1405) lower pole (Ref. 58) 0.86− 0.40i 0.95 f0(980) (Ref. 58) 0.25 + 0.10i 0.27

∆(1232) (Ref. 60) 0.43 + 0.29i 0.52 a0(980) (Ref. 58) 0.68 + 0.18i 0.70

Σ(1385) (Ref. 60) 0.74 + 0.19i 0.77 ρ(770) (Ref. 55) 0.87 + 0.21i 0.89

Ξ(1535) (Ref. 60) 0.89 + 0.99i 1.33 K∗(892) (Ref. 59) 0.88 + 0.13i 0.89

Ω (Ref. 60) 0.74 0.74

Λc(2595) (Ref. 56) 1.00− 0.61i 1.17

We summarize the results of the field renormalization constant Z in Table 1. We
also show the absolute values |Z| for reference. In some cases, the result depends
on the cutoff of the loop function, reflecting the scheme-dependent nature of the
field renormalization constant.

The field renormalization constant Z measures the effect of the elementary con-
tribution as the deviation from unity, while it is obtained as a complex number.
A naive prescription for the interpretation is to take the absolute value.55,58,59

Another prescription is to take the real part.60 In the examples shown in Table 1,
two prescriptions provide roughly the same result, thanks to the relatively small
imaginary part.

We should again keep in mind that these numbers are not directly interpreted
as the “probability” of the elementary component. This is clear because the result
sometimes exceeds unity, as seen in the σ meson and the Λc(2595) baryon cases.
On the other hand, it is clear that the magnitude of Z (or ReZ) should reflect the
amount of the elementary component,60 to some extent. It is an important future
project to establish a firm interpretation of the field renormalization constant of
the resonances.

5. Other Approaches to the Hadron Structure

We have been discussing the structure of hadrons from the viewpoint of the com-
positeness. This approach satisfies two conditions for a proper classification scheme
summarized in Subsec. 2.5; the compositeness is defined by the hadronic degrees of
freedom and can be related to experimental observables. On the other hand, the
extension to the resonances is not straightforward and we have not yet established
a satisfactory method, as shown in Sec. 4. In the followings, we review the other
approaches to study the structure of hadrons from different viewpoints. Since the
different approaches shed light on the different aspects of the hadrons, the com-
parison of several approaches will be helpful to elucidate the nature of the exotic
hadrons.

1330045-31

[55] F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012), [56] T. Hyodo, Phys. Rev. Lett. 111, 
132002 (2013), [58] T. Sekihara, T. Hyodo, Phys. Rev. C 87, 045202 (2012), 
[59] C.W. Xiao, F. Aceti, M. Bayar, Eur. Phys. J. A49, 22 (2013), [60], F. Aceti, et al., Eur. 
Phys. J. A50, 57 (2014).

Model-independent determination?

Z in model calculations
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Near-threshold bound state

a : scattering length, re : effective range
R = (2μB)-1/2 : radius <— binding energy
Rtyp : typical length scale of the interaction

a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

Z of weakly-bound (R ≫ Rtyp) s-wave state <— observables.
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

- Deuteron is NN composite (a~R≫re), only from observables,
  without referring to the nuclear force/wave function.

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)
- Derivation for general separable interaction:

How is it possible to related Z with observables?

Weak binding limit
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Near-threshold bound state

Scaling (zero-range) limit: scattering length a ≠ 0, Rtyp -> 0

- All (2-body) quantities are expressed by a: universality
E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

Finite Rtyp: Z expresses the violation of the scaling

B = 1/(2µa2) ) R = a ) Z = 0

- Bound state is always composite in the scaling limit.

 (r) =
e�r/a

p
2⇡ar

Rtyp

V (r)

r (r)

/ e�r/R r

r (r)|Rtyp!0 / e�r/a

a =
2(1� Z)

2� Z
R+O(Rtyp)

T. Hyodo, Phys. Rev. C90, 055208 (2014)
C. Hanhart, J.R. Pelaez, G. Rios, Phys. Lett. B 738, 375 (2014)

model dependent 

model 
independent 

Scaling limit
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Near-threshold bound state

Universal description of low-energy scattering p ≪ Λ ~ 1/Rtyp

D.B. Kaplan, Nucl. Phys. B494, 471 (1997)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

- nonrelativistic quantum field theory with contact int.

- zero-range model —> scaling limit : Z=0

Hint ¼
1

4
k0ðwywÞ2: ð45Þ

The interaction term corresponds to a momentum-independent vertex with the Feynman
rule $ik0. Such an interaction is singular, so the model requires an ultraviolet cutoff K on
the momenta of virtual atoms.

The Zero-Range Model is renormalizable in the 2-body sector. As shown in Section 4.2,
the bare coupling constant k0 in Eq. (45) can be adjusted as a function of K so that 2-body
observables do not depend on K. The scattering length has the desired value a if the bare
coupling constant is

k0ðKÞ ¼ 1$ 2

p
aK

! "$1 8pa
m

: ð46Þ

This expression can be inverted to express the scattering length as a function of the bare
coupling constant and the cutoff:

a ¼ m
8p

1

k0
þ m

4p2
K

# $$1

: ð47Þ

The expression for the bare coupling constant in Eq. (46) provides a simple illustration of
Wilsonian renormalization, which was discussed in Section 3.7. The operator ðwywÞ2 in Eq.
(45) has engineering dimension 6. The corresponding dimensionless coupling constant is
therefore Kk0ðKÞ. This dimensionless coupling constant has fixed points for two values
of the scattering length: a ¼ 0 and a ¼ &1. The trivial fixed point a ¼ 0 corresponds to
a noninteracting theory. For infinitesimal values of a, the dimensionless coupling constant
is Kk0ðKÞ ' 8paK=m. Thus near the trivial fixed point, ðwywÞ2 is an irrelevant operator
with scaling dimension 1. The nontrivial fixed point a ¼ &1 is commonly referred to as
the unitary limit. At the fixed point, the dimensionless coupling constant is
k̂(0 ' $4p2=m. For infinitesimal values of 1=a, the deviation of the dimensionless coupling
constant from its fixed-point value is Kk0ðKÞ $ k̂(0 ' $2p3=ðmaKÞ. Thus near the unitary
fixed point, ðwywÞ2 is a relevant operator with scaling dimension $1.

4.2. Green’s function

The amputated connected Green’s function for 2 atoms to evolve into 2 atoms can be
calculated analytically by summing the series of diagrams shown in Fig. 3. Each vertex
gives a factor of $ik0. Each loop gives the product of two propagators, which must be inte-
grated over the momenta and energies of the virtual atoms. In the center-of-mass frame,
the integral is

Fig. 3. The series of diagrams whose sum is the amputated connected Green’s function for atom–atom scattering
in a model with contact interactions only, such as the Zero-Range Model.

1788 E. Braaten et al. / Annals of Physics 323 (2008) 1770–1815

f(p) =
1

� 1
a + ip+O( p2

⇤2 )

- resonance model : Z≠0

trated in Fig. 6. This amplitude depends only on the total energy E of the two atoms in the
center-of-mass frame:

AðEÞ ¼ $ k0 þ
g2

0

E $ m0 þ ie

! "$1

þ m
4p2

K$ m
8p

j

" #$1

; ð122Þ

where j ¼ ð$mE $ ieÞ1=2. After inserting the renormalization conditions in Eqs. (119), the
dependence on the ultraviolet cutoff K disappears and the amplitude reduces to

AðEÞ ¼ $ kþ g2

E $ mþ ie

! "$1

$ m
8p

j

" #$1

: ð123Þ

8.3. T-matrix element

The T-matrix element T ðkÞ for the scattering of atoms with relative momentum k can
be obtained from the amplitude AðEÞ in Eq. (123) by setting E equal to the total energy
k2=m of the two atoms:

T ðkÞ ¼ $ k$ mg2

mm$ k2

! "$1

þ i

8p
mk

" #$1

: ð124Þ

Comparing with Eq. (16), we obtain the S-wave phase shift given in Eq. (115).

Fig. 6. The integral equation for the amputated connected Green’s function for atom–atom scattering in a model
with a diatomic molecule that has a coupling to two atoms, such as the Resonance Model.

Fig. 5. The series of diagrams that give the amputated connected Green’s function for atom–atom scattering in
the Resonance Model.

E. Braaten et al. / Annals of Physics 323 (2008) 1770–1815 1807

f(p) =
1

� 1
a + re

2 p
2 + ip+O( p4

⇤4 )

Contact interaction —> separable —> weak binding formula
Y. Kamiya, T. Hyodo, in preparation

T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)

Effective field theory
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Appropriate basis for bound states

Conditions for model-independent formula: 

Applicability:

Near-threshold bound state

- stable s-wave bound state near threshold

- Deuteron only!

Application to exotic hadrons
—> Generalization to unstable particles

composite Xelementary Z
- uududd - NN(s-wave)
- ΔΔ - πΝN - …

Short summary for bound states
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Near-threshold resonances

Z(B) =
1

1� ⌃0(�B)

Compositeness of bound states

complexcomplex

<— Normalization of resonances
- Problem of interpretation (not probability!)

Naive generalization to resonances:
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

Z(ER) =
1

1� ⌃0(ER)

hR |R i ! 1, h R̃ |R i = 1

complex

| R̃ i ⌘ |R⇤ i

|R i

E

T. Berggren, Nucl. Phys. A 109, 265 (1968)

1 = h R̃ | 0 ih 0 |R i+
Z

dph R̃ |p ihp |R i

h R̃ | 0 i = h 0 |R i 6= h 0 |R i⇤

Generalization to resonances
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Near-threshold resonances

Suppose that we obtain…

case Z X U=|Z|+|X|-1
1 0.94 + i 0.01 0.06 - i 0.01 0.00088
2 0.94 + i 5.3 0.06 - i 5.3 9.7
3 4.45 + i 0.01 -3.45 - i 0.01 6.9

Problematic cases: large imaginary part (case 2) and/or
large cancellation of the real part (case 3)

Ideal case 1: Z dominance, elementary.
<— wave function is similar to the bound state with Z = 0.94

c.f. T. Berggren, Phys. Lett. 33B, 547 (1970)
Possible measure of uncertainty: U=|Z|+|X|-1

- When U is large, then Z and X should not be interpreted.

Interpretation of complex Z
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a =
2(1� Z)

2� Z
R+O(Rtyp), re =

�Z

1� Z
R+O(Rtyp),

(
a ⇠ Rtyp ⌧ �re (elementary dominance),

a ⇠ R � re ⇠ Rtyp (composite dominance).

Near-threshold resonances

Magnitude of effective range

- elementary dominance (Z~1) —> large negative re

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

D. Morgan, M.R. Pennington, Phys. Lett. B258, 444 (1991)
V. Baru et al., Phys. Lett. B586, 53 (2004)

- elementary (Z~1) —> k1 ~ -k2, composite (Z~0) —> |k1| ≪ |k2|

Pole counting (bound or quasi-bound state)

k1 = i
p
2µE, k2 = �i

p
2µE

2� Z

Z

- two poles in the effective range expansion

Alternative measure of compositeness
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Near-threshold resonances

Weak binding limit for bound states

- Model-independent (no potential, wavefunction, ... )
- Related to experimental observables

What about near-threshold resonances (~ small binding)?

p± =
i

re
± 1

re

r
2re
a

� 1

Effective range expansion

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

f(p) =

✓
�1

a
+

re
2
p2 � ip

◆�1

Resonance pole position —> (a, re) —> elementariness

E

Near-threshold resonances
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E = 0.67 MeV, � = 2.59 MeV p± =
p
2µ(E ⌥ i�/2)

Near-threshold resonances

Pole position of Λc(2595) in πΣc scattering
- central values in PDG

a =� p+ + p�

ip+p�
= �10.5 fm, re =

2i

p+ + p�
= �19.5 fm

- deduced threshold parameters of πΣc scattering

Large negative effective range
<— substantial elementary contribution other than πΣc
      (three-quark, other meson-baryon channel, or ... )

Λc(2595) is not likely a πΣc composite

πΣcΛc(2595)

Application: Λc(2595)

- Field renormalization constant cannot be interpreted.
Z = 1� 0.608i, U = |Z|+ |X|� 1 = 0.78
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So far, we consider the lowest energy threshold.

Near-threshold quasi-bound state

bound state resonance

Quasi-bound state

d NN πΣcΛc(2595)

- Scattering length is real.

—> see next talk

quasi-bound state:
channel 1:

πΣ

KN̅

channel 2 (decay):

Λ(1405)

- Scattering length of channel 1 is complex.

Generalization to quasi-bound states
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Compositeness X and elementariness Z

Complex Z and X for unstable particles:

Near-threshold resonance:

Model-independent aspect of compositeness

Summary

- appropriate basis for hadron structure
- determined by observables
- formulated in effective field theory

- Uncertainty: U=|Z|+|X|-1
- Elementariness <— magnitude of re

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)

- Λc(2595) is not a πΣc molecule.

Summary


