

Phenomenology of a pseudoscalar glueball and charmed mesons in a chiral symmetric Model

Walaa I. Eshraim

Thanks to

Prof. Dr. Dirk H. Rischke

Workshop on Strangeness and Hadron Physics at J-PARC, KEK Tokai campus, Japan, August 7th , 2015

Introduction

Quantum Chromodynamics: QCD
Symmetries of the QCD Lagrangian.
if all quark massless then we have chiral symmetry

 $U(N_f)_r \times U(N_f)_l = SU(N_f)_r \times SU(N_f)_l \times U(1)_V \times U(1)_A$

- Spontaneous breaking of chiral symmetry by quark condensates
- Explicit breaking of global chiral symmetry by quark masses and chiral anomaly
- Effective chiral models of QCD.
- Development of a chirally symmetric model for mesons. 'Extended Linear Sigma Model (eLSM)'

Motivation

- Decay of the pseudoscalar glueball into scalar and pseudoscalar mesons.
- Linear sigma model with vector and axial vector degrees of freedom.
- Inclusion of the charmed mesons into the linear sigma model (extended Linear Sigma Model eLSM).
- Extension from low-energy to high-energy mesons.
- Study of the model for $T = \mu = 0$ (spectroscopy in vacuum).

Fields of the model

• Mesons: quark-antiquark states ($q\overline{q}$)

(scalar, pseudoscalar, vector and axialvector quarkonia.)

Quantum number: $J^{PC} \longrightarrow$ ChargeConjugation TotalSpin Parity

• Glueballs (additional mesons): The scalar and the pseudoscalar glueball.

W. I. Eshraim

• **Baryons: nucleon doublet and its partner** (in the so-called mirror assignment)

Construction of the eLSM

The construction of the so-called Extended Linear Sigma Model based on

• dilatation invariance

Note that: The breaking of the dilatation symmetry is only included in the "gluonic part" (scalar glueball and axial anomaly)

• chiral invariance

$$SU(N_f)_r \times SU(N_f)_l \times U(1)_V$$

Furthermore, the invariance under C and P is also taken into account.

The eLSM Lagrangian with (axial-)vector mesons

$$\mathscr{L} = \mathscr{L}_{\text{meson}} + \mathscr{L}_{\text{baryon}} + \mathscr{L}_{\text{dilaton}}$$

$$\begin{split} \mathscr{L}_{\text{meson}} &= \text{Tr}[(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m_{0}^{2}\text{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\text{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\text{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &- \frac{1}{4}\text{Tr}[(L^{\mu\nu})^{2} + (R^{\mu\nu})^{2}] + \text{Tr}[(\frac{m_{1}^{2}}{2} + \Delta)(L_{\mu}^{2} + R_{\mu}^{2})] + \text{Tr}[H(\Phi + \Phi^{\dagger})] \\ &+ (c_{1}(\det \Phi - \det \Phi^{\dagger})^{2} \neq i\frac{g_{2}}{2}\{\text{Tr}(L_{\mu\nu}[L^{\mu}, L^{\nu}]) + \text{Tr}(R_{\mu\nu}[R^{\mu}, R^{\nu}])\} \\ &+ \frac{h_{1}}{2}\text{Tr}(\Phi^{\dagger}\Phi)\text{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\text{Tr}[|L_{\mu}\Phi|^{2} + |\Phi R_{\mu}|^{2}] \\ &+ 2h_{3}\text{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}) + \text{chirally invariant vector and axialvector four-point interaction vertices \\ \\ \mathscr{L}_{\text{baryon}} &= \bar{\Psi}_{1L}i\gamma_{\mu}D_{1L}^{\mu}\Psi_{1L} + \bar{\Psi}_{1R}i\gamma_{\mu}D_{1R}^{\mu}\Psi_{1R} + \bar{\Psi}_{2L}i\gamma_{\mu}D_{2R}^{\mu}\Psi_{2L} + \bar{\Psi}_{2R}i\gamma_{\mu}D_{2L}^{\mu}\Psi_{2R} \\ &- \hat{g}_{1}(\bar{\Psi}_{1L}\Phi\Psi_{1R} + \bar{\Psi}_{1R}\Phi\Psi_{1L}) - \hat{g}_{2}(\bar{\Psi}_{2L}\Phi^{\dagger}\Psi_{2R} + \bar{\Psi}_{2R}\Phi^{\dagger}\Psi_{2L}) \end{split}$$

$$\mathscr{L}_{\text{dilaton}} = \frac{1}{2} \left(\partial^{\mu} G \right)^{2} - \frac{1}{4} \frac{m_{\text{G}}}{\Lambda^{2}} \left(G^{4} \ln \left| \frac{G}{\Lambda} \right| - \frac{G^{4}}{4} \right)$$

D.Parganlija, P.Kovacs, G.Wolf, F.Giacosa and D.H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]]; W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]].

GOETHE

UNIVERSITÄT

Decays of the pseudoscalar glueball

Interaction Lagrangian for the pseudoscalar glueball:

With scalar and pseudoscalar mesons

$$\mathcal{L}_{\tilde{G}}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right)$$

W. I. Eshraim

With nucleons in the framework of the so-called mirror assignment

$$\mathcal{L}_{\tilde{G}-\text{baryons}}^{\text{int}} = ic_{\tilde{G}\Psi}\tilde{G}\left(\overline{\Psi}_{2}\Psi_{1} - \overline{\Psi}_{1}\Psi_{2}\right) \,.$$

- There fulfill chiral symmetry but breaks the axial anomaly.
- Only one unknown constant. All the rest is fied. The branching ratio of decays are predicted

Mass of a pseudoscalar glueball

W. I. Eshraim

Lattice QCD calculation

[C. Morningstar and M. J. Peardon, AIP Conf. Proc. 688, 220 (2004)

[arXiv:nucl-th/0309068]];

The Pseudoscalar Glueball $\check{G} \equiv |gg\rangle$ at the border within light and heavy

$$M_{\tilde{G}} = 2.6 \text{ GeV}$$

 $J^{PC} = 0^{-+}$
 $I = 0$

Predictions for a pseudoscalar glueball

- Predict branching ratios for decays into three pseudoscalar mesons

The decay of the pseudoscalar glueball into three pions vanishes:

$$\Gamma_{\tilde{G}\to\pi\pi\pi}=0$$

Predict branching ratios for decays into a scalar and a pseudoscalar meson

Quantity	Case (i): $M_{\tilde{G}} = 2.6 \text{ GeV}$	Case (ii): $M_{\tilde{G}} = 2.37 \text{ GeV}$
$\Gamma_{\tilde{G} \to KK_S} / \Gamma_{\tilde{G}}^{tot}$	0.060	0.070
$\Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}}^{tot}$	0.083	0.10
$\Gamma_{\tilde{G} \to \eta \sigma_N} / \Gamma_{\tilde{G}}^{tot}$	0.000026	0.0000030
$\Gamma_{\tilde{G} \to \eta' \sigma_N} / \Gamma_{\tilde{G}}^{tot}$	0.039	0.026
$\Gamma_{\tilde{G} \to \eta \sigma_S} / \Gamma_{\tilde{G}}^{tot}$	$0.012 \ (0.015)$	$0.0094 \ (0.017)$
$\Gamma_{\tilde{G} \to \eta' \sigma_S} / \Gamma_{\tilde{G}}^{tot}$	0(0.0082)	0 (0)

Could be measured by PANDA!

whereas

$$K_s = K_0^*(1430), a_0 = a_0(1450), \sigma_N \approx f_0(1370), \sigma_S \approx f_0(1710)$$

The full width of the pseudoscalar glueball is expected to be small

W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph]; W.I. Eshraim and S. Janowski, PoS ConfinementX 118, (2012) [arXiv:1301.3345 [hep-ph]]; W.I. Eshraim and S. Janowski, J. Phys.Conf. Ser. 426, 012018 (2013) [arXiv:1211.7323 [hep-ph]].

The branching ratio of the decay processes $\Gamma_{\tilde{G}\to\overline{N}N}$ and $\Gamma_{\tilde{G}\to\overline{N}^*N+h.c.}$

$$\frac{\Gamma_{\tilde{G}\to\overline{N}N}}{\Gamma_{\tilde{G}\to\overline{N}^*N+\text{h.c.}}} = 1.94 \,.$$

Remark: The pseudoscalar glueball can be produced directly through a fusion process in proton-proton collision

Charmed mesons in the extended Linear Sigma Model

Fields in the model

• Mesons: quark-antiquark states ($q \overline{q}$)

 $4\,N_{f}^{2}+2\,fields$

• For $N_f = 4$ there are 66 mesons: 64 quark-antiquark fields + one pseudoscalar glueball \tilde{G} +one scalar glueball G

Including charm degree of freedom

1) Pseudoscalar fields:

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (\eta_N + \pi^0) & \pi^+ & K^+ & D^0 \\ \pi^- & \frac{1}{\sqrt{2}} (\eta_N - \pi^0) & K^0 & D^- \\ K^- & \overline{K}^0 & \eta_S & D^-_S \\ \overline{D}^0 & D^+ & D^+_S & \eta_c \end{pmatrix}$$

 $\eta = \eta_N \cos \phi + \eta_S \sin \phi$ and $\eta' = -\eta_N \sin \phi + \eta_S \cos \phi$ with mixing angle $\phi = -44.6^{\circ}$ [W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph]]. The multiplet of the scalar and pseudoscalar quark-antiquark states: $\Phi = S + iP$

3) Vector fields:

$$V^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (\omega_N + \rho^0) & \rho^+ & K^* (892)^+ & D^{*0} \\ \rho^- & \frac{1}{\sqrt{2}} (\omega_N - \rho^0) & K^* (892)^0 & D^{*-} \\ K^* (892)^- & \bar{K}^* (892)^0 & \omega_S & D_S^{*-} \\ \overline{D}^{*0} & D^{*+} & D_S^{*+} & J/\psi \end{pmatrix}^{\mu}$$

4) Axial vector fields:

2) Scalar fields:

 $\frac{K_0^{*-}}{\overline{D}^{*0}}$

 $+ a_0^0$

$$A^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (f_{1,N} + a_1^0) & a_1^+ & K_1^+ & D_1^0 \\ a_1^- & \frac{1}{\sqrt{2}} (f_{1,N} - a_1^0) & K_1^0 & D_1^- \\ K_1^- & \bar{K}_1^0 & f_{1,S} & D_{S1}^- \\ \bar{D}_1^0 & D_1^+ & D_{S1}^+ & \chi_{c,1} \end{pmatrix}^{\mu}$$

 $\overline{n}n \propto \overline{u}u + \overline{d}d$

UNIVERSITÂT

The left-handed matrix: $L^{\mu} = V^{\mu} + A^{\mu}$ and the right-handed matrix: $R^{\mu} = V^{\mu} - A^{\mu}$

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim; Giacosa; and D. H. Rischke; [arXiv:1405.5861 [hep-ph]] W. I. Eshraim

Spontaneous Symmetry Breaking (SSB)

Shifting the fields

$$G \to G + G_0, \quad \sigma_N \to \sigma_N + \phi_N, \quad \sigma_S \to \sigma_S + \phi_S$$

where
$$\phi_N = Z_{\pi} f_{\pi} \qquad \qquad \phi_S = \frac{2Z_k f_k - \phi_N}{\sqrt{2}}$$

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

For $N_f = 4$ new shift

$$\chi_{C0} \to \chi_{C0} + \phi_C$$

where

$$\phi_C = \frac{2Z_D f_D - \phi_N}{\sqrt{2}} = \sqrt{2}Z_{D_s} f_{D_s} - \phi_S = \frac{Z_{\eta_C} f_{\eta_C}}{\sqrt{2}}$$

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

There are 29 eqs. for the squared masses of mesons with 15 unknown parameters.

Parameters

The values of the $N_f = 3$ parameters :

Parameter	Value	Parameter	Value	
m_1^2	$0.413 \times 10^6 \text{ MeV}^2$	m_0^2	$-0.918 \times 10^6 \text{ MeV}^2$	[D. Parg
$\phi_C^2 c/2$	$450 \cdot 10^{-6} \text{ MeV}^{-2}$	δ_S	$0.151 \times 10^6 \mathrm{MeV^2}$	Wolf, F. Rischke
g_1	5.84	h_1	0	(2013) 0 [arXiv:]
h_2	9.88	h_3	3.87	
ϕ_N	$164.6 { m ~MeV}$	ϕ_S	$126.2~{ m MeV}$	$\Rightarrow \chi$
λ_1	0	λ_2	68.3	

[D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]].

$$\chi^2 / d.o.f = 1.23$$

The new three parameters for $N_f = 4$ are $\phi_C, \delta_C, \varepsilon_C$. By fit with $\chi^2 / d.o.f = 1$:

$$\phi_C = (176 \pm 28) \text{ MeV}, \ \delta_C = (3.91 \pm 0.36) \times 10^6 \text{ MeV}^2, \ \varepsilon_C = (2.23 \pm 0.71) \times 10^6 \text{ MeV}^2$$

[W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

Results

Masses of light mesons: Experimental Value [MeV] Observable our Value [MeV] 1186 1281.8 ± 0.6 $m_{f_{1N}}$ 1185 1230 ± 40 m_{a_1} 1372 1426.4 ± 0.9 $m_{f_{1S}}$ 885 891.66 ± 0.26 m_{K^*} 1281 1272 ± 7 m_{K_1} (1200-1500)-i(150-250) 1362 m_{σ_1} 1474 ± 19 1363 m_{a_0} 1720 ± 60 1531 m_{σ_2} 783 782.65 ± 0.12 m_{w_N} 975 1019.46 ± 0.020 m_{w_S} 783 775.5 ± 38.8 m_{ρ} 509 547.853 ± 0.024 m_{η} 141 139.57018 ± 0.00035 m_{π} 957.78 ± 0.06 962 $m_{\eta'}$ 1449 1425 ± 50 $m_{K_0^*}$ 493.677 ± 0.016 485 m_K

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]; D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

Masses of (open and hidden) charmed mesons:

Resonance	Quark content	J^P	Our Value [MeV]	Experimental Value [MeV]
D^0	$uar{c},ar{u}c$	0^{-}	1981 ± 73	1864.86 ± 0.13
D_S^{\pm}	$sar{c},ar{s}c$	0^{-}	2004 ± 74	1968.50 ± 0.32
$\eta_c(1S)$	$c\bar{c}$	0^{-}	2673 ± 118	2983.7 ± 0.7
$D_0^*(2400)^0$	$uar{c},ar{u}c$	0^{+}	2414 ± 77	2318 ± 29
$D_{S0}^{*}(2317)^{\pm}$	$sar{c},ar{s}c$	0^{+}	2467 ± 76	2317.8 ± 0.6
$\chi_{c0}(1P)$	$c\bar{c}$	0^{+}	3144 ± 128	3414.75 ± 0.31
$D^*(2007)^0$	$uar{c},ar{u}c$	1-	2168 ± 70	2006.99 ± 0.15
D_s^*	$sar{c},ar{s}c$	1-	2203 ± 69	2112.3 ± 0.5
$J/\psi(1S)$	$car{c}$	1-	2947 ± 109	3096.916 ± 0.011
$D_1(2420)^0$	$uar{c},ar{u}c$	1^{+}	2429 ± 63	2421.4 ± 0.6
$D_{S1}(2536)^{\pm}$	$sar{c},ar{s}c$	1^{+}	2480 ± 63	2535.12 ± 0.13
$\chi_{c1}(1P)$	$c\bar{c}$	1^{+}	3239 ± 101	3510.66 ± 0.07

W. I. Eshraim, F. Giacosa and D. H. Rischke, [arXiv:1405.5861 [hep-ph]]; W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph].

Mass difference and decay constants

The mass difference of the squared charmed (axial-)vector mesons:

mass difference	theoretical value MeV^2	experimental value MeV^2
$m_{D_1}^2 - m_{D^*}^2$	$(1.2 \pm 0.6) \times 10^6$	1.82×10^{6}
$m_{\chi_{C1}}^2 - m_{J/\psi}^2$	$(1.8 \pm 1.3) \times 10^6$	2.73×10^6
$m_{D_{S1}}^2 - m_{D_S^*}^2$	$(1.2 \pm 0.6) \times 10^6$	$1.97 imes 10^6$

Weak decay constant of D, Ds, and f_{η_C} .

$$f_D = (254 \pm 17) \text{ MeV}$$
, $f_{D_S} = (261 \pm 17) \text{ MeV}$, $f_{\eta_C} = (314 \pm 39) \text{ MeV}$.
[Exp. value = 206.7 ± 8.9] M_{eV} , [Exp. value = 260.5 ± 5.4] M_{eV} , [Exp. value = 335 ± 75] M_{eV}

W. I. Eshraim, F. Giacosa and D. H. Rischke, arXiv:1405.5861 [hep-ph].

GOETHE

UNIVERSITÄT

Decay widths of open charmed mesons:

Decay Channel	Theoretical result [MeV]	Experimental result [MeV]
$D_0^*(2400)^0 \to D\pi = D^+\pi^- + D^0\pi^0$	139^{+243}_{-114}	$D^+\pi^-$ seen; full width $\Gamma = 267 \pm 40$
$D_0^*(2400)^+ \to D\pi = D^+\pi^0 + D^0\pi^+$	51^{+182}_{-51}	$D^+\pi^0$ seen; full width: $\Gamma = 283 \pm 24 \pm 34$
$D^*(2007)^0 \to D^0 \pi^0$	0.025 ± 0.003	seen; < 1.3
$D^*(2007)^0 \to D^+\pi^-$	0	not seen
$D^*(2010)^+ \to D^+\pi^0$	$0.018^{+0.002}_{-0.003}$	0.029 ± 0.008
$D^*(2010)^+ \to D^0 \pi^+$	$0.038^{+0.005}_{-0.004}$	0.065 ± 0.017
$D_1(2420)^0 \to D^*\pi = D^{*+}\pi^- + D^{*0}\pi^0$	65^{+51}_{-37}	$D^{*+}\pi^{-}$ seen; full width: $\Gamma = 27.4 \pm 2.5$
$D_1(2420)^0 \to D^0 \pi \pi = D^0 \pi^+ \pi^- + D^0 \pi^0 \pi^0$	0.59 ± 0.02	seen
$D_1(2420)^0 \to D^+ \pi^- \pi^0$	$0.21^{+0.01}_{-0.015}$	seen
$D_1(2420)^0 \to D^+\pi^-$	0	not seen; $\Gamma(D^+\pi^-)/\Gamma(D^{*+}\pi^-) < 0.24$
$D_1(2420)^+ \to D^*\pi = D^{*+}\pi^0 + D^{*0}\pi^+$	65^{+51}_{-36}	$D^{*0}\pi^+$ seen; full width: $\Gamma = 25 \pm 6$
$D_1(2420)^+ \to D^+\pi\pi = D^+\pi^+\pi^- + D^+\pi^0\pi^0$	0.56 ± 0.02	seen
$D_1(2420)^+ \to D^0 \pi^0 \pi^+$	0.22 ± 0.01	seen
$D_1(2420)^+ \to D^0 \pi^+$	0	not seen; $\Gamma(D^0\pi^+)/\Gamma(D^{*0}\pi^+) < 0.18$
$D_{S1}(2536)^+ \to D^*K = D^{*0}K^+ + D^{*+}K^0$	25^{+22}_{-15}	seen; full width $\Gamma = 0.92 \pm 0.03 \pm 0.04$
$D_{S1}(2536)^+ \to D^+ K^0$	0	not seen
$D_{S1}(2536)^+ \to +D^0K^+$	0	not seen

W. I. Eshraim, F. Giacosa and D. H. Rischke, arXiv:1405.5861 [hep-ph].

Decay widths of hidden charmed mesons:

• The decay widths of charmonium state depend on the parameters λ_1 and h_1 . Using fit including the decay widths of charmonium state χ_{C0} , we obtain

 $\lambda_1 = -0.16$ and $h_1 = 0.046$.

W. I. Eshraim and D. H. Rischke, in preparation, preliminary!

Mixing matrix of the three scalar fields (σ_N , σ_s , G)

$$\begin{pmatrix} f_0(1370) \\ f_0(1500) \\ f_0(1710) \end{pmatrix} = \begin{pmatrix} 0.94 & -0.17 & 0.29 \\ 0.21 & 0.97 & -0.12 \\ -0.26 & 0.18 & 0.95 \end{pmatrix} \begin{pmatrix} \sigma_N \equiv (\overline{u}u + \overline{d}d)/\sqrt{2} \\ \sigma_S \equiv \overline{s}s \\ G \equiv gg \end{pmatrix}$$

where G is a scalar glueball. S. Janowski, F. Giacosa and D. H. Rischke, Phys.Rev. D90 (2014) 114005 [arXiv:1408.4921 [hep-ph]]. W. I. Eshraim

Decay widths of hidden charmed mesons:

1) Decay widths of (axial-)vector charmonium states:

$$\Gamma_{J/\psi} = 0$$
 and $\Gamma_{\chi_{c1}} = 0$

2) Decay widths of scalar charmonium state (η_c):

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\eta_c \to \overline{K}_0^* K}$	0.01	-
$\Gamma_{\eta_c \to a_0 \pi}$	0.01	-
$\Gamma_{\eta_c \to f_0(1370)\eta}$	0.00018	-
$\Gamma_{\eta_c \to f_0(1500)\eta}$	0.006	-
$\Gamma_{\eta_c \to f_0(1710)\eta}$	0.000032	-
$\Gamma_{\eta_c \to f_0(1370)\eta'}$	0.027	-
$\Gamma_{\eta_c \to f_0(1500)\eta'}$	0.024	-
$\Gamma_{\eta_c \to f_0(1710)\eta'}$	0.0006	-
$\Gamma_{\eta_c \to \eta \eta \eta}$	0.052	-
$\Gamma_{\eta_c \to \eta' \eta' \eta'}$	0.0023	-
$\Gamma_{\eta_c \to \eta' \eta \eta}$	0.44	-
$\Gamma_{\eta_c \to \eta' \eta' \eta}$	0.0034	
$\Gamma_{\eta_c \to \eta K \overline{K}}$	0.15	$0.32{\pm}0.17$
$\Gamma_{\eta_c \to \eta' KK}$	0.41	
$\Gamma_{\eta_c \to \eta \pi \pi}$	0.12	$0.54{\pm}0.18$
$\Gamma_{\eta_c \to \eta' \pi \pi}$	0.08	$1.3 {\pm} 0.0.6$
$\Gamma_{\eta_c \to KK\pi}$	0.095	-

W. I. Eshraim and D. H. Rischke, in preparation preliminary!

Decay width of η_C into a pseudoscalar glueball

W. I. Eshraim

UNIVERSITÄT

Decay width of χ_{c0}

W. I. Eshraim

3) Decay widths of a pseudoscalar charmonium state (χ_{c0}):

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\chi_{c0} \to a_0 a_0}$	0.004	-
$\Gamma_{\chi_{c0} \to k_1 \overline{K}_1}$	0.005	-
$\Gamma_{\chi_{c0} \to \eta\eta}$	0.022	0.031 ± 0.0039
$\Gamma_{\chi_{c0} \to \eta' \eta'}$	0.02	0.02 ± 0.0035
$\Gamma_{\chi_{c0} \to \eta \eta'}$	0.004	< 0.0024
$\Gamma_{\chi_{c0}\to K^*K_0^*}$	0.00007	-
$\Gamma_{\chi_{c0}\to\rho\rho}$	0.01	-
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1370)}$	0.005	< 0.003
$\Gamma_{\chi_{c0} \to f_0(1500) f_0(1500)}$	0.004	< 0.0005
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1500)}$	0.000004	< 0.001
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1710)}$	0.0003	0.0069 ± 0.004
$\Gamma_{\chi_{c0} \to f_0(1500) f_0(1710)}$	0.00004	< 0.0007
$\Gamma_{\chi_{c0}\to K_0^*K\eta}$	0.008	-
$\Gamma_{\chi_{c0}\to K_0^*K\eta'}$	0.004	-
$\Gamma_{\chi_{c0} \to f_0(1370)\eta\eta}$	0.0004	-
$\Gamma_{\chi_{c0} \to f_0(1500)\eta\eta}$	0.003	-
$\Gamma_{\chi_{c0}\to f_0(1370)\eta'\eta'}$	0.0027	-
$\Gamma_{\chi_{c0} \to f_0(1370)\eta\eta'}$	0.000089	-
$\Gamma_{\chi_{c0} \to f_0(1500)\eta\eta'}$	0.011	-
$\Gamma_{\chi_{c0}\to f_0(1710)\eta\eta}$	0.00008	-
$\Gamma_{\chi_{c0}\to f_0(1710)\eta\eta'}$	0.00003	-

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\chi_{c0}\to\overline{K}_0^{*0}K_0^{*0}}$	0.01	0.01 ± 0.0047
$\Gamma_{\chi_{c0} \to K^- K^+}$	0.059	$0.061 {\pm} 0.007$
$\Gamma_{\chi_{c0}\to\pi\pi}$	0.089	0.088 ± 0.0092
$\Gamma_{\chi_{c0}\to\overline{K}^{*0}K^{*0}}$	0.0175	$0.017 {\pm} 0.0072$
$\Gamma_{\chi_{c0} \to ww}$	0.01	0.0099 ± 0.0017
$\Gamma_{\chi_{c0} \to \phi \phi}$	0.004	0.0081 ± 0.0013
$\Gamma_{\chi_{c0}\to k_1^+K^-}$	0.005	0.063 ± 0.0233

W. I. Eshraim and D. H. Rischke, in preparation, preliminary!

Conclusions and Outlook

1. In the case of $N_f = 3$: Decay of a pseudoscalar glueball with a mass above 2 GeV.

- 2. Linear sigma model with $N_f = 4$ and vector and axial-vector mesons.
- 3. Masses of (open and hidden) charmed mesons.
- 4. Charm-anticharm condensate and decay constants.
- 5. Decay widths of (open and hidden) charmed mesons.

