Phenomenology of a pseudoscalar glueball and charmed mesons in a chiral symmetric Model
 Walaa I. Eshraim

Thanks to

Prof. Dr. Dirk H. Rischke

Workshop on Strangeness and Hadron Physics at J-PARC, KEK Tokai campus, Japan, August 7th , 2015

Introduction

- Quantum Chromodynamics: QCD
- Symmetries of the QCD Lagrangian.
if all quark massless then we have chiral symmetry

$$
U\left(N_{f}\right)_{r} \times U\left(N_{f}\right)_{l}=S U\left(N_{f}\right)_{r} \times S U\left(N_{f}\right)_{l} \times U(1)_{V} \times U(1)_{A}
$$

- Spontaneous breaking of chiral symmetry by quark condensates
- Explicit breaking of global chiral symmetry by quark masses and chiral anomaly
- Effective chiral models of QCD.
- Development of a chirally symmetric model for mesons.
'Extended Linear Sigma Model (eLSM)'

Motivation

- Decay of the pseudoscalar glueball into scalar and pseudoscalar mesons.
- Linear sigma model with vector and axial vector degrees of freedom.
- Inclusion of the charmed mesons into the linear sigma model (extended Linear Sigma Model - eLSM).
- Extension from low-energy to high-energy mesons.
- Study of the model for $T=\mu=0$ (spectroscopy in vacuum).

Fields of the model

- Mesons: quark-antiquark states ($q \bar{q}$)
(scalar, pseudoscalar, vector and axialvector quarkonia.)

- Glueballs (additional mesons): The scalar and the pseudoscalar glueball.
- Baryons: nucleon doublet and its partner
(in the so-called mirror assignment)

Construction of the eLSM

The construction of the so-called Extended Linear Sigma Model based on

- dilatation invariance

Note that: The breaking of the dilatation symmetry is only included in the "gluonic part" (scalar glueball and axial anomaly)

- chiral invariance

$$
S U\left(N_{f}\right)_{r} \times S U\left(N_{f}\right)_{l} \times U(1)_{V}
$$

Furthermore, the invariance under C and P is also taken into account.

The eLSM Lagrangian with (axial-)vector mesons

$$
\mathscr{L}=\mathscr{L}_{\text {meson }}+\mathscr{L}_{\text {baryon }}+\mathscr{L}_{\text {dilaton }}
$$

$$
\begin{aligned}
\mathscr{L}_{\text {meson }} & =\operatorname{Tr}\left[\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)\right]-m_{0}^{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)-\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2}-\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& -\frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\operatorname{Tr}\left[\left(\frac{m_{1}^{2}}{2}+\Delta\right)\left(L_{\mu}^{2}+R_{\mu}^{2}\right)\right]+\operatorname{Tr}\left[H\left(\Phi+\Phi^{\dagger}\right)\right] \\
& +C_{1}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right)^{2}-i \frac{g_{2}}{2}\left\{\operatorname{Tr}\left(L_{\mu \nu}\left[L^{\mu}, L^{\nu}\right]\right)+\operatorname{Tr}\left(R_{\mu \nu}\left[R^{\mu}, R^{\nu}\right]\right)\right\} \\
& +\frac{h_{1}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(L_{\mu}^{2}+R_{\mu}^{2}\right)+h_{2} \operatorname{Tr}\left[\left|L_{\mu} \Phi\right|^{2}+\left|\Phi R_{\mu}\right|^{2}\right] \\
& +2 h_{3} \operatorname{Tr}\left(L_{\mu} \Phi R^{\mu} \Phi^{\dagger}\right) \text { +chirally invariant vector and axialvector four-point interaction vertices } \\
\mathscr{L}_{\text {baryon }} & =\bar{\Psi}_{1 L} i \gamma_{\mu} D_{1 L}^{\mu} \Psi_{1 L}+\bar{\Psi}_{1 R} i \gamma_{\mu} D_{1 R}^{\mu} \Psi_{1 R}+\bar{\Psi}_{2 L} i \gamma_{\mu} D_{2 R}^{\mu} \Psi_{2 L}+\bar{\Psi}_{2 R} i \gamma_{\mu} D_{2 L}^{\mu} \Psi_{2 R} \\
& -\hat{\mathrm{g}}_{1}\left(\bar{\Psi}_{1 L} \Phi \Psi_{1 R}+\bar{\Psi}_{1 R} \Phi \Psi_{1 L}\right)-\hat{g}_{2}\left(\bar{\Psi}_{2 L} \Phi^{\dagger} \Psi_{2 R}+\bar{\Psi}_{2 R} \Phi^{\dagger} \Psi_{2 L}\right)
\end{aligned}
$$

$\mathscr{L}_{\text {dilaton }}=\frac{1}{2}\left(\partial^{\mu} G\right)^{2}-\frac{1}{4} \frac{m_{\mathrm{G}}}{\Lambda^{2}}\left(G^{4} \ln \left|\frac{G}{\Lambda}\right|-\frac{G^{4}}{4}\right)$
D.Parganija, P.Kovacs, G.Wol, F.Giacosa and D.H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]];
W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]].

Decays of the pseudoscalar glueball

Interaction Lagrangian for the pseudoscalar glueball:

With scalar and pseudoscalar mesons

$$
\mathcal{L}_{\tilde{G}}^{i n t}=i c_{\tilde{G} \Phi} \tilde{G}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right)
$$

With nucleons in the framework of the so-called mirror assignment

$$
\mathcal{L}_{\tilde{G} \text {-baryons }}^{\mathrm{int}}=i c_{\tilde{G} \Psi} \tilde{G}\left(\bar{\Psi}_{2} \Psi_{1}-\bar{\Psi}_{1} \Psi_{2}\right) .
$$

- There fulfill chiral symmetry but breaks the axial anomaly.
- Only one unknown constant. All the rest is fied.

The branching ratio of decays are predicted

Mass of a pseudoscalar glueball

Lattice QCD calculation

The Pseudoscalar Glueball $\check{G} \equiv|g g\rangle$ at the border within light and heavy

$$
\begin{aligned}
& M_{\tilde{G}}=2.6 \mathrm{GeV} \\
& J^{P C}=0^{-+} \\
& I=0
\end{aligned}
$$

Predictions for a pseudoscalar glueball

- Predict branching ratios for decays into three pseudoscalar mesons

Quantity	Case (i): $M_{\tilde{G}}=2.6 \mathrm{GeV}$	Case (ii): $M_{\tilde{G}}=2.37 \mathrm{GeV}$
$\Gamma_{\tilde{G} \rightarrow K K \eta} / \Gamma_{\tilde{G}}^{\text {ot }}$	0.049	0.043
$\Gamma_{\tilde{G} \rightarrow K K \eta^{\prime}} / \Gamma_{\tilde{G}}^{t o t}$	0.019	0.011
$\Gamma_{\tilde{G} \rightarrow \eta \eta \eta} / \Gamma_{\tilde{G}}^{t o t}$	0.016	0.013
$\Gamma_{\tilde{G} \rightarrow \eta \eta \eta^{\prime}} / \Gamma_{\tilde{G}}^{t o t}$	0.0017	0.00082
$\Gamma_{\tilde{G} \rightarrow \eta \eta^{\prime} \eta^{\prime}} / \Gamma_{\tilde{G}}^{+o t}$	0.00013	0
$\Gamma_{\tilde{G} \rightarrow K K \pi} / \Gamma_{\tilde{G}}^{+o t}$	0.47	0.47
$\Gamma_{\tilde{G} \rightarrow \eta \pi \pi} / \Gamma_{\tilde{G}}^{t o t}$	0.16	0.17
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \pi \pi} / \Gamma_{\tilde{G}}^{t o t}$	0.095	0.090

W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph].

PANDA/FAIR will be able to scan the energy above 2.5 GeV

BESIII has measured a candidate: X(2370)

The decay of the pseudoscalar glueball into three pions vanishes:

$$
\Gamma_{\tilde{G} \rightarrow \pi \pi \pi}=0
$$

Predict branching ratios for decays into a scalar and a pseudoscalar meson

Quantity	Case (i): $M_{\tilde{G}}=2.6 \mathrm{GeV}$	Case (ii): $M_{\tilde{G}}=2.37 \mathrm{GeV}$
$\Gamma_{\tilde{G} \rightarrow K K_{S}} / \Gamma_{\tilde{G}}^{t o t}$	0.060	0.070
$\Gamma_{\tilde{G} \rightarrow a_{0} \pi} / \Gamma_{\tilde{G}}^{+o t}$	0.083	0.10
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.0000026	0.0000030
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.039	0.026
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{S}} / \Gamma_{\tilde{G}}^{t o t}$	$0.012(0.015)$	$0.0094(0.017)$
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \sigma_{S}} / \Gamma_{\tilde{G}}^{t o t}$	$0(0.0082)$	$0(0)$

Could be measured by PANDA!
whereas

$$
K_{s}=K_{0}^{*}(1430), a_{0}=a_{0}(1450), \sigma_{N} \approx f_{0}(1370), \sigma_{s} \approx f_{0}(1710)
$$

The full width of the pseudoscalar glueball is expected to be small

The branching ratio of the decay processes $\quad \Gamma_{\tilde{G} \rightarrow \bar{N} N}$ and $\Gamma_{\tilde{G} \rightarrow \bar{N}^{*} N+\text { h.c. }}$

$$
\frac{\Gamma_{\tilde{G} \rightarrow \bar{N} N}}{\Gamma_{\tilde{G} \rightarrow \bar{N}^{*} N+\text { h.c. }}}=1.94 .
$$

Remark: The pseudoscalar glueball can be produced directly through a fusion process in proton-proton collision

Charmed mesons

 in the extended Linear Sigma Model
Fields in the model

- Mesons: quark-antiquark states $(q \bar{q})$

$4 N_{f}^{2}+2$ fields

- For $N_{f}=4$ there are 66 mesons: 64 quark-antiquark fields + one pseudoscalar glueball \tilde{G} +one scalar glueball \boldsymbol{G}

[^0]
Including charm degree of freedom

1) Pseudoscalar fields:

$$
P=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc|}
\frac{1}{\sqrt{2}}\left(\eta_{N}+\pi^{0}\right) & \pi^{+} & K^{+} & D^{0} \\
\pi^{-} & \frac{1}{\sqrt{2}}\left(\eta_{N}-\pi^{0}\right) & K^{0} & D^{-} \\
K^{-} & \bar{K}^{0} & \eta_{S} & D_{S}^{-} \\
\bar{D}^{0} & D^{+} & D_{S}^{+} & \eta_{c}
\end{array}\right)
$$

$\eta=\eta_{N} \cos \phi+\eta_{S} \sin \phi$ and $\eta^{\prime}=-\eta_{N} \sin \phi+\eta_{S} \cos \phi$
2) Scalar fields: $\quad \bar{n} n \propto \bar{u} u+\bar{d} d$
 with mixing angle $\phi=-44.6^{\circ} \quad \begin{gathered}\text { [W. I. Eshraim; S. Janowski; F. Giacosa; D. } \\ \text { H. Rischke. Phys. }\end{gathered}$
H. Rischke. Phys.Rev. D87 (2013) 054036

The multiplet of the scalar and pseudoscalar quark-antiquark states: $\Phi=S+i P$
3) Vector fields:

$$
V^{\mu}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}}\left(\omega_{N}+\rho^{0}\right) & \rho^{+} & K^{*}(892)^{+} & D^{* 0} \\
\rho^{-} & \frac{1}{\sqrt{2}}\left(\omega_{N}-\rho^{0}\right) & K^{*}(892)^{0} & D^{*-} \\
K^{*}(892)^{-} & \bar{K}^{*}(892)^{0} & \omega_{S} & D_{S}^{*-} \\
\bar{D}^{* 0} & D^{*+} & D_{S}^{*+} & J / \psi
\end{array}\right)^{2}
$$

4) Axial vector fields:

$A^{\mu}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}\frac{1}{\sqrt{2}}\left(f_{1, N}+a_{1}^{0}\right) & a_{1}^{+} & K_{1}^{+} & D_{1}^{0} \\ a_{1}^{-} & \frac{1}{\sqrt{2}}\left(f_{1, N}-a_{1}^{0}\right) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \bar{K}_{1}^{0} & f_{1, S} & D_{S 1}^{-} \\ \bar{D}_{1}^{0} & D_{1}^{+} & D_{S 1}^{+} & \chi_{c, 1}\end{array}\right)^{\mu}$

The left-handed matrix: $L^{\mu}=V^{\mu}+A^{\mu} \quad$ and the right-handed matrix: $R^{\mu}=V^{\mu}-A^{\mu}$
W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim; Giacosa; and D. H. Rischke; [arXiv:1405.5861 [hep-ph]]

Spontaneous Symmetry Breaking (SSB)

Shifting the fields

$$
G \rightarrow G+G_{0}, \quad \sigma_{N} \rightarrow \sigma_{N}+\phi_{N}, \sigma_{\mathrm{S}} \rightarrow \sigma_{\mathrm{S}}+\phi_{\mathrm{S}}
$$

where

$$
\phi_{N}=Z_{\pi} f_{\pi} \quad \phi_{S}=\frac{2 Z_{k} f_{k}-\phi_{N}}{\sqrt{2}}
$$

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

For $\boldsymbol{N}_{f}=\mathbf{4}$ new shift

$$
\chi_{C 0} \rightarrow \chi_{C 0}+\phi_{C}
$$

where

$$
\phi_{C}=\frac{2 Z_{D} f_{D}-\phi_{N}}{\sqrt{2}}=\sqrt{2} Z_{D_{s}} f_{D_{s}}-\phi_{S}=\frac{Z_{\eta_{C}} f_{\eta_{C}}}{\sqrt{2}}
$$

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]];W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

There are 29 eqs. for the squared masses of mesons with 15 unknown parameters.

Parameters

The values of the $\boldsymbol{N}_{f}=\mathbf{3}$ parameters :

Parameter	Value	Parameter	Value	[D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]].$\Rightarrow \chi^{2} / \text { d.o. } f=1.23$
m_{1}^{2}	$0.413 \times 10^{6} \mathrm{MeV}^{2}$	m_{0}^{2}	$-0.918 \times 10^{6} \mathrm{MeV}^{2}$	
$\phi_{C}^{2} c / 2$	$450 \cdot 10^{-6} \mathrm{MeV}^{-2}$	δ_{S}	$0.151 \times 10^{6} \mathrm{MeV}^{2}$	
g_{1}	5.84	h_{1}	0	
h_{2}	9.88	h_{3}	3.87	
ϕ_{N}	164.6 MeV	ϕ_{S}	126.2 MeV	
λ_{1}	0	λ_{2}	68.3	

The new three parameters for $N_{f}=\mathbf{4}$ are $\phi_{C}, \delta_{C}, \varepsilon_{C}$.
By fit with $\chi^{2} /$ d.o.f $=1$:
$\phi_{C}=(176 \pm 28) \mathrm{MeV}, \quad \delta_{C}=(3.91 \pm 0.36) \times 10^{6} \mathrm{MeV}^{2}, \varepsilon_{C}=(2.23 \pm 0.71) \times 10^{6} \mathrm{MeV}^{2}$.
[W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

Results

Masses of light mesons:

Observable	our Value $[\mathrm{MeV}]$	Experimental Value $[\mathrm{MeV}]$
$m_{f_{1 N}}$	1186	1281.8 ± 0.6
$m_{a_{1}}$	1185	1230 ± 40
$m_{f_{1 S}}$	1372	1426.4 ± 0.9
$m_{K^{*}}$	885	891.66 ± 0.26
$m_{K_{1}}$	1281	1272 ± 7
$m_{\sigma_{1}}$	1362	$(1200-1500)-\mathrm{i}(150-250)$
$m_{a_{0}}$	1363	1474 ± 19
$m_{\sigma_{2}}$	1531	1720 ± 60
$m_{w_{N}}$	783	782.65 ± 0.12
$m_{w_{S}}$	975	1019.46 ± 0.020
m_{ρ}	783	775.5 ± 38.8
m_{η}	509	547.853 ± 0.024
m_{π}	141	139.57018 ± 0.00035
$m_{\eta^{\prime}}$	962	957.78 ± 0.06
$m_{K_{0}^{*}}$	1449	1425 ± 50
m_{K}	485	493.677 ± 0.016

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]; D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

Masses of (open and hidden) charmed mesons:

Resonance	Quark content	J^{P}	Our Value $[\mathrm{MeV}]$	Experimental Value $[\mathrm{MeV}]$
D^{0}	$u \bar{c}, \bar{u} c$	0^{-}	1981 ± 73	1864.86 ± 0.13
$D_{S}^{ \pm}$	$s \bar{c}, \bar{s} c$	0^{-}	2004 ± 74	1968.50 ± 0.32
$\eta_{c}(1 S)$	$c \bar{c}$	0^{-}	2673 ± 118	2983.7 ± 0.7
$D_{0}^{*}(2400)^{0}$	$u \bar{c}, \bar{u} c$	0^{+}	2414 ± 77	2318 ± 29
$D_{S 0}^{*}(2317)^{ \pm}$	$s \bar{c}, \bar{s} c$	0^{+}	2467 ± 76	2317.8 ± 0.6
$\chi_{c 0}(1 P)$	$c \bar{c}$	0^{+}	3144 ± 128	3414.75 ± 0.31
$D^{*}(2007)^{0}$	$u \bar{c}, \bar{u} c$	1^{-}	2168 ± 70	2006.99 ± 0.15
D_{s}^{*}	$s \bar{c}, \bar{s} c$	1^{-}	2203 ± 69	2112.3 ± 0.5
$J / \psi(1 S)$	$c \bar{c}$	1^{-}	2947 ± 109	3096.916 ± 0.011
$D_{1}(2420)^{0}$	$u \bar{c}, \bar{u} c$	1^{+}	2429 ± 63	2421.4 ± 0.6
$D_{S 1}(2536)^{ \pm}$	$s \bar{c}, \bar{s} c$	1^{+}	2480 ± 63	2535.12 ± 0.13
$\chi_{c 1}(1 P)$	$c \bar{c}$	1^{+}	3239 ± 101	3510.66 ± 0.07

W. I. Eshraim, F. Giacosa and D. H. Rischke, [arXiv:1405.5861 [hep-ph]]; W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph].

Mass difference and decay constants

The mass difference of the squared charmed (axial-)vector mesons:

mass difference	theoretical value MeV^{2}	experimental value MeV^{2}
$m_{D_{1}}^{2}-m_{D^{*}}^{2}$	$(1.2 \pm 0.6) \times 10^{6}$	1.82×10^{6}
$m_{\chi_{C 1}}^{2}-m_{J / \psi}^{2}$	$(1.8 \pm 1.3) \times 10^{6}$	2.73×10^{6}
$m_{D_{S 1}}^{2}-m_{D_{S}^{*}}^{2}$	$(1.2 \pm 0.6) \times 10^{6}$	1.97×10^{6}

Weak decay constant of $D, D s$, and $f_{\eta_{C}}$

$$
f_{D}=(254 \pm 17) \mathrm{MeV}, f_{D_{S}}=(261 \pm 17) \mathrm{MeV}, f_{\eta_{C}}=(314 \pm 39) \mathrm{MeV}
$$

$[$ Exp. value $=206.7 \pm 8.9] \mathrm{MeV},[$ Exp. value $=260.5 \pm 5.4] \mathrm{MeV},[$ Exp. value $=335 \pm 75] \mathrm{MeV}$

Decay widths of open charmed mesons:

Decay Channel	Theoretical result $[\mathrm{MeV}]$	Experimental result $[\mathrm{MeV}]$
$D_{0}^{*}(2400)^{0} \rightarrow D \pi=D^{+} \pi^{-}+D^{0} \pi^{0}$	139_{-114}^{+243}	$D^{+} \pi^{-}$seen; full width $\Gamma=267 \pm 40$
$D_{0}^{*}(2400)^{+} \rightarrow D \pi=D^{+} \pi^{0}+D^{0} \pi^{+}$	51_{-51}^{+182}	$D^{+} \pi^{0}$ seen; full width: $\Gamma=283 \pm 24 \pm 34$
$D^{*}(2007)^{0} \rightarrow D^{0} \pi^{0}$	0.025 ± 0.003	seen; <1.3
$D^{*}(2007)^{0} \rightarrow D^{+} \pi^{-}$	0	not seen
$D^{*}(2010)^{+} \rightarrow D^{+} \pi^{0}$	$0.018_{-0.003}^{+0.002}$	0.029 ± 0.008
$D^{*}(2010)^{+} \rightarrow D^{0} \pi^{+}$	$0.038_{-0.004}^{+0.005}$	0.065 ± 0.017
$D_{1}(2420)^{0} \rightarrow D^{*} \pi=D^{*+} \pi^{-}+D^{* 0} \pi^{0}$	65_{-37}^{+51}	$D^{*+} \pi^{-}$seen; full width: $\Gamma=27.4 \pm 2.5$
$D_{1}(2420)^{0} \rightarrow D^{0} \pi \pi=D^{0} \pi^{+} \pi^{-}+D^{0} \pi^{0} \pi^{0}$	0.59 ± 0.02	seen
$D_{1}(2420)^{0} \rightarrow D^{+} \pi^{-} \pi^{0}$	$0.21_{-0.015}^{+0.01}$	seen
$D_{1}(2420)^{0} \rightarrow D^{+} \pi^{-}$	0	not seen; $\Gamma\left(D^{+} \pi^{-}\right) / \Gamma\left(D^{*+} \pi^{-}\right)<0.24$
$D_{1}(2420)^{+} \rightarrow D^{*} \pi=D^{*+} \pi^{0}+D^{* 0} \pi^{+}$	65_{-36}^{+51}	$D^{* 0} \pi^{+}$seen; full width: $\Gamma=25 \pm 6$
$D_{1}(2420)^{+} \rightarrow D^{+} \pi \pi=D^{+} \pi^{+} \pi^{-}+D^{+} \pi^{0} \pi^{0}$	0.56 ± 0.02	seen
$D_{1}(2420)^{+} \rightarrow D^{0} \pi^{0} \pi^{+}$	0.22 ± 0.01	seen
$D_{1}(2420)^{+} \rightarrow D^{0} \pi^{+}$	0	not seen; $\Gamma\left(D^{0} \pi^{+}\right) / \Gamma\left(D^{* 0} \pi^{+}\right)<0.18$
$D_{S 1}(2536)^{+} \rightarrow D^{*} K=D^{* 0} K^{+}+D^{*+} K^{0}$	25_{-15}^{+22}	seen; full width $\Gamma=0.92 \pm 0.03 \pm 0.04$
$D_{S 1}(2536)^{+} \rightarrow D^{+} K^{0}$	0	not seen
$D_{S 1}(2536)^{+} \rightarrow+D^{0} K^{+}$	0	not seen

W. I. Eshraim, F. Giacosa and D. H. Rischke, arXiv:1405.5861 [hep-ph].

Decay widths of hidden charmed mesons:

- The decay widths of charmonium state depend on the parameters λ_{l} and h_{l}.

Using fit including the decay widths of charmonium state $\chi_{C 0}$, we obtain

$$
\lambda_{l}=-0.16 \text { and } h_{l}=0.046 .
$$

W. I. Eshraim and D. H. Rischke, in preparation, preliminary!

Mixing matrix of the three scalar fields ($\sigma_{\mathrm{N}}, \sigma_{s, G}$)
$\left(\begin{array}{c}f_{0}(1370) \\ f_{0}(1500) \\ f_{0}(1710)\end{array}\right)=\left(\begin{array}{ccc}0.94 & -0.17 & 0.29 \\ 0.21 & 0.97 & -0.12 \\ -0.26 & 0.18 & 0.95\end{array}\right)\left(\begin{array}{c}\sigma_{N} \equiv(\bar{u} u+\bar{d} d) / \sqrt{2} \\ \sigma_{S} \equiv \bar{s} s \\ G \equiv g g\end{array}\right)$
where G is a scalar glueball.
S. Janowski, F. Giacosa and D. H. Rischke, Phys.Rev. D90 (2014) 114005 [arXiv:1408.4921 [hep-ph]].

Decay widths of hidden charmed mesons:

1) Decay widths of (axial-)vector charmonium states:

$$
\Gamma_{J / \psi}=0 \quad \text { and } \quad \Gamma_{\chi_{c 1}}=0
$$

2) Decay widths of scalar charmonium state (η_{C}):

Decay Channel	theoretical result $[\mathrm{MeV}]$	Experimental result [MeV]
$\Gamma_{\eta_{c} \rightarrow \bar{K}_{0}^{*} K}$	0.01	-
$\Gamma_{\eta_{c} \rightarrow a_{0} \pi}$	0.01	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1370) \eta}$	0.00018	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1500) \eta}$	0.006	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1710) \eta}$	0.000032	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1370) \eta^{\prime}}$	0.027	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1500) \eta^{\prime}}$	0.024	-
$\Gamma_{\eta_{c} \rightarrow f_{0}(1710) \eta^{\prime}}$	0.0006	-
$\Gamma_{\eta_{c} \rightarrow \eta \eta \eta}$	0.052	-
$\Gamma_{\eta_{c} \rightarrow \eta^{\prime} \eta^{\prime} \eta^{\prime}}$	0.0023	-
$\Gamma_{\eta_{c} \rightarrow \eta^{\prime} \eta \eta}$	0.44	-
$\Gamma_{\eta_{c} \rightarrow \eta^{\prime} \eta^{\prime} \eta}$	0.0034	
$\Gamma_{\eta_{c} \rightarrow \eta K \bar{K}}$	0.15	0.32 ± 0.17
$\Gamma_{\eta_{c} \rightarrow \eta^{\prime} K K}$	0.41	
$\Gamma_{\eta_{c} \rightarrow \eta \pi \pi}$	0.12	0.54 ± 0.18
$\Gamma_{\eta_{c} \rightarrow \eta^{\prime} \pi \pi}$	0.08	$1.3 \pm 0.0 .6$
$\Gamma_{\eta_{c} \rightarrow K K \pi}$	0.095	-

W. I. Eshraim and D. H. Rischke, in preparation preliminary!

Decay width of η_{C} into a pseudoscalar glueball

BESIII: $m_{\widetilde{G}}=2370 \mathrm{MeV}$

Could be measured by

Lattice QCD calculations:

$$
m_{\widetilde{G}}=2600 \mathrm{MeV}
$$

$$
=0.124 \mathrm{MeV}
$$

W. I. Eshraim and D. H. Rischke, in preparation

Decay width of χ_{co}

3) Decay widths of a pseudoscalar charmonium state $\left(\chi_{c 0}\right)$:

Decay Channel	theoretical result $[\mathrm{MeV}]$	Experimental result $[\mathrm{MeV}]$
$\Gamma_{\chi_{c 0} \rightarrow a_{0} a_{0}}$	0.004	-
$\Gamma_{\chi_{c 0} \rightarrow k_{1} K_{1}}$	0.005	-
$\Gamma_{\chi_{c 0} \rightarrow \eta \eta}$	0.022	0.031 ± 0.0039
$\Gamma_{\chi_{c 0} \rightarrow \eta^{\prime} \eta^{\prime}}$	0.02	0.02 ± 0.0035
$\Gamma_{\chi_{c 0} \rightarrow \eta \eta^{\prime}}$	0.004	<0.0024
$\Gamma_{\chi_{c 0} \rightarrow K^{*} K_{0}^{*}}$	0.00007	-
$\Gamma_{\chi_{c 0} \rightarrow \rho \rho}$	0.01	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) f_{0}(1370)}$	0.005	<0.003
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1500) f_{0}(1500)}$	0.004	<0.0005
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) f_{0}(1500)}$	0.000004	<0.001
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) f_{0}(1710)}$	0.0003	0.0069 ± 0.004
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1500) f_{0}(1710)}$	0.00004	<0.0007
$\Gamma_{\chi_{c 0} \rightarrow K_{0}^{*} K \eta}$	0.008	-
$\Gamma_{\chi_{c 0} \rightarrow K_{0}^{*} K \eta^{\prime}}$	0.004	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) \eta \eta}$	0.0004	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1500) \eta \eta}$	0.003	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) \eta^{\prime} \eta^{\prime}}$	0.0027	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1370) \eta \eta^{\prime}}$	0.000089	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1500) \eta \eta^{\prime}}$	0.011	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1710) \eta \eta}$	0.00008	-
$\Gamma_{\chi_{c 0} \rightarrow f_{0}(1710) \eta \eta^{\prime}}$	0.00003	-

Decay Channel	theoretical result $[\mathrm{MeV}]$	Experimental result $[\mathrm{MeV}]$
$\Gamma_{\chi_{c 0} \rightarrow \bar{K}_{0}^{* 0} K_{0}^{* 0}}$	0.01	0.01 ± 0.0047
$\Gamma_{\chi_{c 0} \rightarrow K^{-} K^{+}}$	0.059	0.061 ± 0.007
$\Gamma_{\chi_{c 0} \rightarrow \pi \pi}$	0.089	0.088 ± 0.0092
$\Gamma_{\chi_{c 0} \rightarrow \bar{K}^{* 0} K^{* 0}}$	0.0175	0.017 ± 0.0072
$\Gamma_{\chi_{c 0} \rightarrow w w}$	0.01	0.0099 ± 0.0017
$\Gamma_{\chi_{c 0} \rightarrow \phi \phi}$	0.004	0.0081 ± 0.0013
$\Gamma_{\chi_{c 0} \rightarrow k_{1}^{+} K^{-}}$	0.005	0.063 ± 0.0233

W. I. Eshraim and D. H. Rischke, in preparation, preliminary!

1. In the case of $N_{f}=3:$ Decay of a pseudoscalar glueball with a mass above 2 GeV .
2. Linear sigma model with $N_{f}=4$ and vector and axial-vector mesons.
3. Masses of (open and hidden) charmed mesons.
4. Charm-anticharm condensate and decay constants.
5. Decay widths of (open and hidden) charmed mesons.

[^0]: W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim, F. Giacosa, and D. H. Rischke , [arXiv: 1405.5861 [hep-ph]].

