Lambda baryons from lattice QCD - from strange to charm -

Toru T. Takahashi (Gunma College of Technology)

with P. Gubler (ECT*) Makoto Oka (TITech)

Our target is Λ

Negative parity Λ (1405)

- difficulty in mass reproduction in quark models
- possibility of meson-baryon (NK, πΣ) molecule
- NK strong attraction
- Has been problematic in Lattice QCD analyses
- Recently A(1405) was identified in lattice QCD calculation PRL 108, 112001 (2012)

Spin-orbit partner of $\boldsymbol{\Lambda}$

 Properties of spin 3/2 Λ, which is the Λ(1405)'s partner

$\Lambda(1405)$'s structures

Flavor structures
 Internal wavefunctions

Λc's properties

Lattice

QCD

properties of Ac, where the strange is replaced with the charm
What does the HQ symmetry cause?

Recent lattice QCD study

Recent Lattice study of Λ

Isolating the $\Lambda(1405)$ in Lattice QCD, Adelaide group ; PRL 108, 112001 (2012)

2+1 conf. by PACS-CS Pion mass \rightarrow 156~702 MeV

Brief summary

 Correlation matrix analyses with many types of interpolating fields • lowest state lies between KN, $\pi\Sigma$ thresholds \rightarrow Same order as the real world \rightarrow Claim to have identified $\Lambda(1405)$ signal Still too heavy Adjusted the valence s-quark mass so as to correctly reproduce the K-meson mass (partially quenching) Gets experimental value • lowest \rightarrow singlet dominant 2^{nd} lowest \rightarrow octet dominant

Recent Lattice study of Λ

Lattice QCD Evidence that the A(1405) Resonance is an Antikaon-Nucleon Molecule Adelaide group ; Phys.Rev.Lett. 114 (2015) 13, 132002

2+1 conf. by PACS-CS Pion mass \rightarrow 156~702 MeV

Κ

Ν

There are several issues to be clarified, but the signal can be the $\Lambda(1405)$.

Our target is Λ

 $udS - \Lambda$

 $m_u = m_d < m_s$

SU(3)F symmetry

Replace S with C

 $udC - \Lambda$

 $m_u = m_d \ll m_c$

Heavy quark spin symmetry appears Spin-spin interactions become weak Heavy quark spin decouples and is irrelevant Largely broken SU(3)F symmetry Two excitation modes may decouple Hadron spectra would be much simpler

decouples d

Manifestation of Diquark DOF ?

Diquarks

Two diquark motion (ρ and λ modes) may decouple in heavy baryons

u l d c

ρ-mode excitation Diquark's relative motion

Then, excited Ac spectra can be simply explained in terms of diquarks (?)

Diquarks

Then, what is the relationship between uds- Λ and udc- Λ ?

- \rightarrow Internal structure change
- \rightarrow Manifestation of diquark's degrees of freedom

Strategies

Our strategy

We investigate masses and flavor structures of $udQ-\Lambda$ baryons

Our strategy

-- Lattice QCD setups --

2+1 gauge configuration by PACS-CS Iwasaki gauge action, Wilson quark action $32^3 \times 64$, a~0.1 fm, cut off ~2.2GeV

 \rightarrow Well reproduces light hadron mass spectra

We do not employ Relativistic Heavy Quark actions

 \rightarrow cut off of 2.2 GeV may be insufficient for mQ > 1GeV

→ not good, but use a common quark action for u, d, Q quarks in order to see the internal structure changes Our strategy

-- Hadronic operators --

We employ operators classfied in terms of Cubic group irreducible rep. \rightarrow 4x4 corrlation matrix (We can extract ground \sim 3rd excited states.)

- u, d, Q quark operator sizes are the same.
- \rightarrow Operator mixing vanishes in the flavor-SU(3) limit (mu=md=mQ)
- \rightarrow Easy to see the flavor structures of Λ particles

PRD72 (2005) 074501 LHPC group

Operator examples

TABLE VIII: Quasi-local Λ baryon operators.			
$\overline{\Psi}^{\Lambda,k}_{S,S_z}$	$\overline{\Lambda}_{\mu_1\mu_2\mu_3}$	$\overline{\Psi}^{\Lambda,k}_{S,S_z}$	$\overline{\Lambda}_{\mu_1\mu_2\mu_3}$
$\overline{\Psi}^{G_{1g},1}_{\frac{1}{2},\frac{1}{2}}$	$\overline{\Lambda}_{121}$	$\overline{\Psi}^{G_{1u},1}_{\frac{1}{2},\frac{1}{2}}$	$\overline{\Lambda}_{123} + \overline{\Lambda}_{141} + \overline{\Lambda}_{321}$
$\overline{\Psi}_{\frac{1}{2},-\frac{1}{2}}^{\tilde{G}_{1g},1}$	$\overline{\Lambda}_{122}$	$\overline{\Psi}_{\frac{1}{2},-\frac{1}{2}}^{\tilde{G}_{1u},1}$	$\overline{\Lambda}_{124} + \overline{\Lambda}_{142} + \overline{\Lambda}_{322}$
$\Psi^{G_{1g},2}_{\frac{1}{2},\frac{1}{2}}$	$\overline{\Lambda}_{143} + \overline{\Lambda}_{323} + \overline{\Lambda}_{341}$	$\Psi^{G_{1u},1}_{\frac{1}{2},\frac{1}{2}}$	Λ_{343}
$\overline{\Psi}_{\frac{1}{2},-\frac{1}{2}}^{\tilde{G}_{1\tilde{g}},2}$	$\overline{\Lambda}_{144} + \overline{\Lambda}_{324} + \overline{\Lambda}_{342}$	$\overline{\Psi}^{G_{1u},1}_{\frac{1}{2},-\frac{1}{2}}$	$\overline{\Lambda}_{344}$
$\overline{\Psi}^{G_{1g},3}_{\frac{1}{2},\frac{1}{2}}$	$\overline{\Lambda}_{134} + \overline{\Lambda}_{323} - \overline{\Lambda}_{341}$	$\Psi^{G_{1u},1}_{\frac{1}{2},\frac{1}{2}}$	$-\overline{\Lambda}_{141}-\overline{\Lambda}_{312}+\overline{\Lambda}_{123}$
$\overline{\Psi}_{\frac{1}{2},-\frac{1}{2}}^{\hat{G}_{1}\hat{g},3}$	$\overline{\Lambda}_{144} + \overline{\Lambda}_{423} - \overline{\Lambda}_{342}$	$\overline{\Psi}_{\frac{1}{2},-\frac{1}{2}}^{\tilde{G}_{1u},1}$	$-\overline{\Lambda}_{322}-\overline{\Lambda}_{241}+\overline{\Lambda}_{124}$
$\overline{\Psi}^{G_{1g},4}_{\frac{1}{2},\frac{1}{2}}$	$\sqrt{\frac{2}{3}}(\overline{\Lambda}_{134}+\overline{\Lambda}_{341}+\overline{\Lambda}_{413})$	$\overline{\Psi}^{G_{1u},4}_{\frac{1}{2},\frac{1}{2}}$	$-\sqrt{\frac{2}{3}}(\overline{\Lambda}_{123}+\overline{\Lambda}_{231}+\overline{\Lambda}_{312})$
$\overline{\Psi}^{G_{1g},4}_{\frac{1}{2},-\frac{1}{2}}$	$\sqrt{\frac{2}{3}}(\overline{\Lambda}_{234}+\overline{\Lambda}_{342}+\overline{\Lambda}_{423})$	$\overline{\Psi}^{G_{1u},4}_{\frac{1}{2},-\frac{1}{2}}$	$-\sqrt{\frac{2}{3}}(\overline{\Lambda}_{124}+\overline{\Lambda}_{241}+\overline{\Lambda}_{412})$
$\overline{\Psi}^{H_{g}}_{\frac{3}{2},\frac{3}{2}}$	$\overline{\Lambda}_{133}$	$\Psi^{H_{u}}_{\frac{3}{2},\frac{3}{2}}$	$\overline{\Lambda}_{131}$
$\overline{\Psi}^{H_{g}^{-}}_{\frac{3}{2},\frac{1}{2}}$	$\overline{\Lambda}_{134} + \overline{\Lambda}_{143} + \overline{\Lambda}_{233}$	$\overline{\Psi}^{H_{u}}_{\frac{3}{2},\frac{1}{2}}$	$\overline{\Lambda}_{132} + \overline{\Lambda}_{141} + \overline{\Lambda}_{231}$
$\overline{\Psi}^{H_g}_{\frac{3}{2},-\frac{1}{2}}$	$\overline{\Lambda}_{144} + \overline{\Lambda}_{234} + \overline{\Lambda}_{243}$	$\overline{\Psi}^{H_{u}}_{\frac{3}{2},-\frac{1}{2}}$	$\overline{\Lambda}_{142} + \overline{\Lambda}_{232} + \overline{\Lambda}_{241}$
$\overline{\Psi}^{\hat{H}_{g}}_{\frac{3}{2},-\frac{3}{2}}$	$\overline{\Lambda}_{244}$	$\overline{\Psi}^{\bar{H}_{u}}_{\frac{3}{2},-\frac{3}{2}}$	$\overline{\Lambda}_{242}$

½ octet (octet-1)
½ octet (octet-2)
½ octet (octet-3)
½ singlet

3/2 octet

Correlation matrix analyses

-- Mass and flavor structures --

2pt cross correlator QCD transfer matrix

 $\langle \Lambda^{i}(T)\Lambda^{j}(0)\rangle = \langle 0|\Lambda^{i}e^{-HT}\Lambda^{j}|0\rangle = \langle 0|\Lambda^{i}|k\rangle \exp(-E_{k}T)\langle k|\Lambda^{j}|0\rangle$

 $= c^T \Lambda(E_k) c$

i,j are operator indices

eigenvectors

$$\Lambda(E_k) = diag(-E_1T, -E_2T, \dots)$$

eigenvalues

Eigenvalue of correlation matrix \rightarrow mass of the state Eigenvector of correlation matrix \rightarrow operator overlaps with the state

 $\langle 0 | \Lambda^i | target state \rangle$

We can investigate internal structures.

Mass spectra

Mass spectra

UDS

$\frac{1}{2}$ negative Λ channel

1/2 negative Ac channel

UDC

Mass spectra

Hadron mass dependences on Q-quark mass

We consider "flavor symmetry" for u , d , Q quarks. (even if Q=charm, we classify states still in terms of SU(3))

> Singlet component $C_s = \langle \Lambda | O_s | vac \rangle$ $O_s = \frac{1}{\sqrt{3}} (u(dQ) + d(Qu) + Q(ud))$

Octet component $C_0 = \langle \Lambda | O_0 | vac \rangle$ $O_0 = \frac{1}{\sqrt{6}} (u(dQ) + d(Qu) - 2Q(ud))$

Lowest 3 states in 1/2- channel

Lowest 3 states in 1/2- channel

SU(3) wave functions can be expressed in terms of diquark wave functions

Spin ¹/₂ negative parity channel

Replace S with C $udS - \Lambda$ $udC - \Lambda$ $m_{\mu} = m_d \ll m_c$ $m_{\mu} = m_d < m_s$ SU(3)F symmetry Broken SU(3)F 0:S=1:-1 ∧c(~2950) Λ(1800) **Octet** dominant p-mode dominant O:S=1:0 ∧c(~2900) Λ(1670) p-mode dominant (spin total 3/2) **Octet** dominant 0:S=1:1 Λ(1405) Ac(2595) Singlet dominant λ -mode dominant

Diquark DOF seem to appear around mQ~700MeV

Spin ¹/₂ negative parity channel

Replace S with C $udS - \Lambda$ $udC - \Lambda$ $m_{\mu} = m_d < m_s$ $m_{\mu} = m_d \ll m_c$ SU(3)F symmetry Broken SU(3)F Possibility of level crossing (or misidentification?) 0:<u>S</u>=1:-1 ∧c(~2950) Λ(1800) **Octet** dominant p-mode dominant S:S=1:0∧c(~2900) Λ(1670) **Octet** dominant p-mode dominant (spin total 3/2) 0:S=1:1 Λ(1405) Ac(2595) Singlet dominant λ -mode dominant

Level crossing occurs ?

Summary

We investigated the flavor structure of the low-lying Λ 's in lattice QCD.

Mass

The mass spectra of Λc and Λs are similar though their flavor structures are completely different

Flavor structure

Ground state : (UDS) singlet dominant state \rightarrow (UDC) λ -mode excitation Excited state : (UDS) octet dominant state \rightarrow (UDC) ρ - and λ -mode excitations Well classified in terms of diquark excitations above (current) mQ > 700 MeV

Future work?

Other channels? More sophisticated analysis on the internal structures of Λ baryons