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U.S. -based EIC

1 NSAC 2007 Long-Range Plan:

“An Electron-lon Collider (EIC) with polarized beams
has been embraced by the U.S. nuclear science
community as embodying the vision for reaching
the next QCD frontier.”

1 NSAC Facilities Subcommittee (2013):

“The Subcommittee ranks an EIC as Absolutely Central
in its ability to contribute to world-leading science
in the next decade.”

1 NSAC 2015 Long-Range Plan:

“We recommend a high-energy high-luminosity
polarized EIC as the highest priority for new facility
construction following the completion of FRIB.”

4 EIC User Group Meetings:

Stony Brook University, NY —June 24-27, 2014
UC at Berkeley, CA — January 6-9, 2016
Argonne National Lab, IL — July 7-9, 2016
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Why the EIC?

To understand the role of gluons in binding
Quarks and Gluons into Nucleons and Nuclei

Outline of the rest of my talk

d 21st Century Nuclear Science
d The next QCD frontier
 The Electron-lon Collider

1 Key deliverables & opportunities, ...

d Summary



215t Century Nuclear Science
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4 How hadrons are emefged from quarks and gluons?

1 How does QCD make up the properties of hadrons?
Their mass, spin, magnetic moment, ...

0 What is the QCD landscape of nucleon and nuclei?
Color Confinement Asymptotic freedom
| ; : > Q (GeV)

2GeV (1/10fm)  Probing

1+ momentum
= —
4 ? - {}.‘.‘, R ‘ 5

d How do the nuclear force arise from QCD?
a ...

200 MeV (1 fm)




The next QCD frontier

0 Understanding the glue that binds us all - the Next QCD Frontier!

1 Gluons are weird particles!

< Massless, yet, responsible for nearly all visible mass

“Mass without mass!”
[ T [ T |

Rapid acquisition of mass is
_ ~=ffect of gluon cloud
- %

S
=
T T

Higgs mechanism

Dynamics of gluons

e
w

—— m=0 (Chiral limi]

0
U '
Quarks

Mass =1.78x1026 g

M(p) [GeV]
o
N

\ Proton
\ Mass ~168x102° g

e
o

~ 99% of proton mass

~ 1% of proton mass .

0

p [GeV]

Bhagwat & Tandy/Roberts et al



The next QCD frontier

0 Understanding the glue that binds us all - the Next QCD Frontier!

1 Gluons are weird particles!

< Massless, yet, responsible for nearly all visible mass
< Carry color charge, responsible for color confinement and strong force

Force between a heavy quark pair 31 p-60 —a - e

=62 r—e— BT
- B=64 N

Cornell

q q 1l
L2
/-— \ ”z‘é 0_
.:M —’;. >
= A1
=
-« > 2

r K3

Heavy quarks experience a force of ' , | | | |
~16 tons at ~1 Fermi (10-"5m) distance * o5 1 15 2 25 s




The next QCD frontier

0 Understanding the glue that binds us all - the Next QCD Frontier!

1 Gluons are weird particles!

< Massless, yet, responsible for nearly all visible mass

< Carry color charge, responsible for color confinement and strong force

but, also for asymptotic freedom

Nobel Prize, 2004
=) QCD perturbation theory

Q)

03

0.2 +

0.1 L

Sept. 2013
v Tdecays (N°LO)

@ Lattice QCD (NNLO)

2 DIS jets (NLO)

1 Heavy Quarkonia (NLO)

o e*e jets & shapes (res. NNLO)
e Z pole fit (N3LO)

v pp — jets (NLO)

= QCD oy (M,) = 0.1185 + 0.0006

10 Q [GeV] 100 1000




The next QCD frontier

0 Understanding the glue that binds us all - the Next QCD Frontier!

1 Gluons are weird particles!

< Massless, yet, responsible for nearly all visible mass

< Carry color charge, responsible for color confinement and strong force
4.0

CTEQG5' parton o
3.5} distribution functions
: Q% =10 GeV?

but, also for asymptotic freedom,

as well as the abundance of glue

Momentum Fraction Times Parton Density

0 1 I
0.0001 0.001 0.01 0.1 1.0
Fraction of Overall Proton Momentum Carried by Parton



The next QCD frontier

0 Understanding the glue that binds us all - the Next QCD Frontier!

Quarks

uc
d|s

Leptons

0 Gluons are wired particles!

< Massless, yet, responsible for nearly all visible mass
< Carry color charge, responsible for color confinement and strong force

ty
»
o

CTEQ 6.5 parton
3.5} distribution functions
: Q? = 10 GeV?

but, also for asymptotic freedom,

as well as the abundance of glue

Without gluons, there would be
NO nucleons, NO atomic nuclei...
NO visible world!

b
See also A DeShpande S talk Fraction of Overall Proton Momentum Carried by Parton

Momentum Fraction Times Parton Densi
N
(@]



Electron-lon Collider (EIC)

d A giant “Microscope” - “see” quarks and gluons by breaking the hadron

1/Q
<1/10fm

(l)

d A sharpest “CT” - “imagine” quark/gluon
without breaking the hadron

— “cat-scan” the nucleon and nuclei
with better than 1/10 fm resolution

— “see” the proton “radius” of gluon density
d Why now?

Exp: advances in luminosity, energy reach, detection capability, ...

Thy: breakthrough in factorization — “see” confined quarks and gluons, ...



Many complementary probes at one facility

O Lepton-hadron facility — “see” glue via quarks:
e (ku/)

Q2 —->Measure of resolution

Y = Measure of inelasticity
X = Measure of momentum fraction
of the struck quark in a proton

Q2=Sxy

X(p,)

Inclusive events: e+p/A > e’+X
Detect only the scattered lepton in the detector

Semi-Inclusive events: e+p/A - e’+h(x,K,p,jet)+X
Detect the scattered lepton in coincidence with identified hadrons/jets

Exclusive events: e+p/A - e’+ p’/A’+ h(xw,K,p,jet)
Detect every things including scattered proton/nucleus (or its fragments)




The White Paper
1212.1701.v3
A. Accardi et al

US EIC - two options of realization

,?n'!

Electron lon Collider:
The Next QCD Frontier

Understanding the glue
that binds us all

SECOND EDITION

FFAG Recirculating Electron Rings ERL Cryomodules
1.3-6.6 GeV ‘{(7&
A .
2212 0oy Ry Beam Dump B
/ Energy Recoven y
Coherent Linac Polarized
Electron Cooler Electron Source
Detector |
hadrons
Detector Ii

100 meters
s

From AGS

AGS BNL-RHIC

lon Collider Ring

p—

-
Electron Collider Ring Booier
lon Source
Electron Source
12 GeV CEBAF

100 meters

JLab-CEBAF




US EIC - Kinematic reach & properties

103k Current polarized DIS data:
C o0 CERN ADESY ¢JLab oSLAC

Current polarized BNL-RHIC pp data:
® PHENIX T° ASTAR 1-jet

—~ 102_
[aV]
>
O
S
[aV]
O
10 e yo//
: £
| /
L L L1 | | |
10" 10° 107 10

For e-A collisions at ;he EIC:

v" Wide range in nuclei

v Variable center of mass energy
v" Wide Q2 range (evolution)

v" Wide x region (high gluon densities)

Q% (GeV?)

10°

10

01l ahy,

For e-N collisions at the EIC:

v' Polarized beams: e, p, d/3He

v' Variable center of mass energy

v' Wide Q2 range - evolution

v" Wide x range -2 spanning from
valence to low-x physics

v 100-1K times of HERA Luminosity

T ' | ' rrrrTr ! T
- Measurements with A = 56 (Fe):

F e eA/pA DIS (E-139, E-665, EMC, NMC)

=  vA DIS (CCFR, CDHSW, CHORUS, NuTeV)
o DY (E772, E866)




US EIC - Kinematic reach & properties

103k Current polarized DIS data:
C o0 CERN ADESY ¢JLab oSLAC

1 For e-N collisions at the EIC:
1 v Polarized beams: e, p, d/3He
v' Variable center of mass energy

Current polarized BNL-RHIC pp data:
® PHENIX T° ASTAR 1-jet

— 10? -
E v' Wide Q2 range - evolution
5 v" Wide x range - spanning from

10 ¢

valence to low-x physics
v 100-1K times of HERA Luminosity

o i | O T a e paron T N _
o 3.5F distribution functions 4
For e-A collisions at the EIC: sof @ =10Gev? — :

v" Wide range in nuclei

v Variable center of mass energy

v" Wide Q2 range (evolution)

v" Wide x region (high gluon densities)

2.5f

EIC explores the “sea” and the “glue”,
the “valence” with a huge level arm

Momentum Fraction Times Parton Density
N
o

0.0001 0.001 0.01 0.1 1.0
Fraction of Overall Proton Momentum Carried by Parton



US EIC

The key deliverables & opportunities

Why existing facilities, even with upgrades,
cannot do the same?



QCD and hadron properties: mass, spin, ...

J Hadron mass from Lattice QCD calculation:

H H H H B B
1 T T T T 1 T T T T T T T T T 3
2200 | —
- -— - ]

2400

1800 |- =
1600 :— _im —:
1400 - o — L) =

1200 | -

(MeV)

1000 | R Y
800 |- = —_ =
600 |- : -
400 | < —

200 :—m <« —:

A major success of QCD - is the right theory for the Strong Interaction!
How does QCD generate this? The role of quarks vs that of gluons?



Mass vs. Spin

O Mass - intrinsic to a particle:

= Energy of the particle when it is at the rest

< QCD energy-momentum tensor in terms of quarks and gluons

y | —, = y 1 y o I
THY = 3 yiD"“y" 'y + 7 g*"F? — F**F",
< Proton mass: ,
(p| [ d>xT" |p) X. Ji, PRL (1995)
m = ~ GeV

(p\p} p at rest
 Spin - intrinsic to a particle:

= Angular momentum of the particle when it is at the rest
< QCD angular momentum density in terms of energy-momentum tensor

ARIU[I.I/ — -TLll/:]:[l. o -TLl[l.:]:l/ e]l — %(l_]}l /(]3’1‘1“[0-},‘

< Proton spin:

'v <l T - ].
S(u) =Y (P, S|J; ()| P, S) = 5



Proton spin

d Proton’s spin: g

4 Current understanding:

" 1

Proton Spin

@

Quark helicity

Gluon helicit
1 — knf)wn Start to knovz Orbital Angular Momentum
; / dr (Au+M+Ad+Ad+As+A§) of quarks and gluons
~ 30% AG = / dzAg(x) Little known

o . ~ 20%(with RHIC data)
Spin “puzzle

If we do not understand proton spin, we do not understand QCD



The power and precision of EIC

U Polarized x-section at EIC:

10

9

gh(x,Q%) + C(x)

v SMC

v

T x = 0.0063 (+7.5) + EMC

g x = 0,0141 (+6.2)

x = 0.0245 (+5.2)

b TmIF x = 0.0346 (+4.5)
W E155  geemesmmmmr x = 0.0490 (+4.0)

E143 phmwmmme=® x = 00775 (+3.5)
nagmeBennts  x = 0,122 (+3.0)
4 HERMES o e x=0.173 (+2.5)
et —tiep X = 0.245 (+2.0)
— BB ——— k% X = 0.346 (+1.5)
e GRSV s m e X = 0.490 (+1.0)
..... AAC um - x = 0.735 (+0.5)
1 10 100

Q% (GeV?)

1 Reach out the glue:

dgl(xa Qz) _«

dinQ2 2

at EIC

;qu ® Ag(z, Q%) + - -

g1(x,02) + const(x)

10

DSSV+
x=5.2x10 (+52)
- *q;’ EIC:
i ¥ 5GeVon 100 GeV
B 8.2x10‘5(+43) 4+ 5GeVon250GeV

J

1.3x10™(+36)

2.1x10™ (+31)

11

u 3.3x10*(+27)

| +___e,__9——e——f 5.2x10" (+24)

L . ox—et—o—0 8.2x107*(+21)
R _ o 1.3x10°(+19)

|

> 20 GeVon 250 GeV

B o
i A oo 2.1x103(+17)
Ak Oh o0 33x10°(+15.5)
. oa—op 52x10°(+14)
M ! e — —o 8.2x10°(+13)
e - oh—oa———o 13x102(+12)
© 2.1x10% (+11) = A GOk ©
3.3x102(+10) = A —Cx ox—9 ¢
52x10%(+9)  *——F % o—o
= 8.2x10° (+8) o i & * S a ©
1.3x107 (+7) *— = ——a—oca—oa—0
L 2.1x107 (+6) T OA
33x107 (+5) ¥— % ————a
- 5.2x107 (+4) ¥—+—a——u—m
1 I 1 1 1 1111 I 1 1 11 1 111 ] 1 1 11 1 111 I
2 3
1 10 10 10
Q2 (GeV?)




Our understanding of proton spin

d The decisive measurement (15t year of running at US EIC):
(Low x and wide x range at EIC)

oouf- 50 E £
o.o:f— -- -fonz

0'/V : 1 .
-o.o:f— b f-om

------ DSSV
- B DSSVe & BC 5400, 225 -

004 o 3 — —1-004
- wll uncertmntion for &Y =9 - 1
PIETTTY BRI ST ey | PP BT AR TTYY BT AR

T LILLALAL! S

xAgBeforelafter

l

G
Gluon Contribution to Proton Spin

Precision in A~ and Ag = A clear idea
of the magnitude of Lo+Lg

1

o
o

o

O
o

1
—

I EIC: 5 GeV on 100 & 200 GeV
EIC: 20 GeV on 250 GeV

current data
(global analysis)

Q% = 10 GeV?

All uncertainties forAy =9

i I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
0.15 0.175 0.20 0.225

Quark Contribution to Proton Spin

No other machine in the world can achieve this!



Nucleon mass

. . Martin Savage (U of Washington
 Lattice QCD calculation: o
David Richards (Jlab)
1.6 .
| ¥
1.5} B
14t t
e
¥
;‘ 1.3 4
[0 o
(O 12 o )
— ' * h H l
3 pnysica
Z 11} A ¥

E . } L LHPC 2008

1.0 \ xQCD 2012

' ¥
pe RBC: Preliminary DSDR
| RBC: a~! = 1.75(3) GeV
0.8k u RBC: o' =2.31(4) GeV
0.0 0.1 0.2 0.6 0.7 0.8

0.3 0.4 0.5
ma/(2v/27 fo)
My = 800 MeV + my  Unexpected behavior!! Why?



Nucleon mass

d How do quarks and gluons contribute to the nucleon mass?
< QCD energy-momentum tensor in terms of quarks and gluons
rur = LGiDUy g + L ghF? — prap,
< Its hadronic matrix element with zero momentum transfer:
DIT™ 1) PP BT [p)(g) PP () =
< Invariant hadron mass (in any frame):

m? o (p|T, |p)

. o _ B9) rpvapa "
with TQZ§F“ F,, + Z mq(l—l-’Ym)@bq@bq

\ J
Y
QCD trace anomaly

g=u,d,s

B(g) = —(11 — 2ns/3) ¢°/ (47)% + ...
mm) At the chiral limit, the entire mass is from gluons!

Kharzeev @ Temple workshop

< Heavy quarkonium production near threshold at JLab12 & EIC
New opportunities and activities for EIC! Meziani @ Temple workshop



Nucleon mass

epe Xiangdong Ji (Maryland)
1 Decomposition — sum rules: Dima Kharzeev (Stony Brook

4 Hadron state: Keh-Fei Liu (Kentucky)
|P)  With the normalization: (P|P) = (E/M)(2m)%6°(0)

< Hamiltonian:
(P|H|P) = (E*/M)(27)*6*(0)  with Hqcp = / d&*zTY(0,7)

<> Hadron mass:

_ (P|Hqcp|P) _
M = <P|P> |rest frame —_ Hq‘|’Hm+Hg+Ha

X. Ji, PRL (1995)

Mass type H; M, m, — 0 (MeV) m, —  (MeV)
Quark energy S (—iD - @)y 3(a — b)/4 270 300
Quark mass . ymaifs b 160 110
Gluon energy 5(E? + B?) 3(1 — a)/4 320 320
Trace anomaly 4 (E2 — B?) (1 — b)/4 190 210

1
a(p?) = Zfo xlqr (e, ®) + Gy (x, p?)ldx
7

bM = (P|m,iu + mydd|P) + {(P|m,5s|P)



Nucleon mass

epe Xiangdong Ji (Maryland)
1 Decompsition — sum rules: Dima Kharzeev (Stony Brook

% Hadron state: Keh-Fei Liu (Kentucky)
|P)  With the normalization: (P|P) = (E/M)(2m)%6°(0)
< Hamiltonian:

(P|H|P) = (E*/M)(27)*6*(0)  with Hocp = / &B7T(0, 7)

<> Hadron mass:

X. Ji, PRL (1995)
(P|Hgcpl| P)

M = <P|P> |rest frame IHq+Hm—|-Hg+Ha
O Trace

Anomaly @ Quark

20% Energy

29%

Update on
lattice effort .
K.-F. Liu New opportunities

and activities for EIC!

O Gluon B Quark
Energy Mass
34% 17%



Boosted 3D nucleon structure

O High energy probes “see” the boosted partonic structure:

k
Momentum ! Coordinate
Space Space
P xXp P
TMDs

GPDs
fd?b, [ d2k,
Confined Spatial
motion distribution

f(x,k;) | Two-scales observables | f(x,by)

3D momentum space images 2+1D coordinate space images

[ Need x-sections with two-momentum scales observed:
Q1> Q2~1/R ~ Aqcp

< Hard scale: ()1 localizes the probe
to see the quark or gluon d.o.f.

< “Soft” scale: ()2 could be more sensitive to
hadron structure, e.g., confined motion



Boosted 3D nucleon structure

O High energy probes “see” the boosted partonic structure:

Momentum

Coordinate
Space

Space
TMDs GPDs

xp _—
fd?b, [ d2k,
Confined Spatial
motion distribution

f(x,k;) | Two-scales observables | f(x,by)

3D momentum space images

2+1D coordinate space images

,y* I —l— 5 — T ) E— V:J/z/}7¢7p
Exclusive DIS ) Tl
t l %::g Q >> [t|~ 1/b;

JLab12 - valence quarks, EIC - sea quarks and gluons



Boosted 3D nucleon structure

d High energy probes “see” the boosted partonic structure:

k
Momentum ! Coordinate
Space Space
P xXp P
TMDs GPDs

fdif;/// \\\<£i?%

: ~ f(%K1) Eic white paper: arXiv:1212.1701 f(x,br) Imaging
Sivers Function

xg (0 &) Um) xg"* (5 00) ) xg(cb &) )
u quark d quark - Zrlﬁaﬁ"w // \
0.5 0.5 ! /
s <
S o S o = =
X N 7N PN ——
os os 17 ==N\BWW17” = =S
| | g H//@\\\ 7@\ ///@\\\
v Y S —- s < VWSS | W01 | [\
k(GeV) k(GeV) NNSEZZAENN-= ~=
Density distribution of an unpolarized O,

quark in a proton moving in z direction S e et
and polarized in y-direction Spatial density distributions — “radius”



Boosted 3D nucleon structure

d High energy probes “see” the boosted partonic structure:

k
Momentum ! Coordinate
Space Space
P xXp P
TMDs GPDs

/ dibT/ %kT

f(X'kT) EIC white paper: arXiv:1212.1701 f(X'bT) Imaging

£ g“(x5,0%) 1fm) £q"(xb,0) tfm™) xg(x5,0%) Ufm ™

Sivers Function

u quark 15 5,21205:",, / /\\
| N PN =
W7 —=\\\UlW17~ B
z o (LW | | [ 7 (@M
0.5 0 05 L WSS | TS W)
(GeV) TN | [\ = S
NS = " T

Position " X Momentum P - Orbital Motion of Partons



Spatial distribution of gluons

 Exclusive vector meson production:

do EIC-WhitePaper

dx pdQ2dt

< Fourier transform of the t-dep

mmm)  Spatial imaging of glue density
<> Resolution ~1/Q or 1/M

e J/LP, CD,
/
1-+5//§é 2}%\\1—5
— —,
T t-dep
d Gluon |mag|ng from S|mulatlon
7 0.03
6
o 0.02
e °F
T 4
£ 3t
% 2|
1 L

0.8
by (fm)

0 02 04 06

Only possible at the EIC
Proton radius of gluon density

“Gluon radius (x)”

1

BR(J/y — e*€”) x do/dt (pb/GeV?)

-
o«h

w

W\\\

\\
\&\\

v* +p—>J/1p+p

102;-

10

0.0016 < xy < 0.0025
15.8 GeV2 < Q@2 + M2

det- 10fb1 .
20 GeV on 250 GeV

2
hp< 25.1 GeV

04

06 08 1 12 14 16
-t (GeV?)

Why the “radius” is
very
interesting?



Spatial distribution of gluons

 Exclusive vector meson production: do EIC-WhitePaper
» dx pdQ?dt
V e J/LP ’ q) g oo
< < Fourier transform of the t-de
— — mmm)  Spatial imaging of glue density
: T t-dep g <> Resolution ~1/Q or 1/M

O What does the proton look like?

v “\\ N
"“/ ® o \ ( ./]
. [ ag| i ..
Static: e 9) Q)
o &) D
\\ f/// o iv.{' e
’( ’ R P
i~ 0O O i i 00 : i OF )
Hard probe: . ® O O | 80 oo | | o
Y 0@,/ 00 g8 0@
@ ’ & N
Bag Model Quark Model Lattice

Proton “radius” of gluon density is extremely sensitive to
the color confinement mechanism, in particular, its “x”’-dependence !



Run away gluon density at small x?

1 What causes the low-x rise?
gluons gluon radiation
— non-linear gluon interaction

What tames the low-x rise?
gluon recombination

— non-linear gluon interaction

J HERA dlscovery

4.0

r CTEQS®. 5 parton
= d|str|butlon functlons
: Q? =10 GeV?

w
o

3.0

d
O PSR | N I \\L.
0.0001 0.001 0.01 0.1 1.0
Fraction of Overall Proton Momentum Carried by Parton

d QCD vs. QED:
QCD - gluon in a proton:

Momentum Fraction Times Parton Density
N
=)

) o asN, [Ydo' , . , . < Atverysmall-x, proton is “black”,
@ dngfCG(x Q%) ~ / T positronium is still transparent!
QED - p hoton in a p c;s:tron;um: < Recombination of large numbers
deQz o (7, Q%) ~ — [—§x¢7(a:,Q2) of glue could lead to saturation

phenomena

di 2 ) A2
+/x 7 0o (@@ + 6o (2, )]] < Universal property of QCD!



Run away gluon density at small x?

| HERA dlscovery

Momentum Fraction Times Parton Density

1 Particle vs. wave feature:

In Q2

CTEQ 6. 5 parton
3.5F d\|str|but|on functlons

1 What causes the low-x rise?
- Q% =10 GeV? ] e 4
3.0 gluons : gluon radiation
2.5¢ — non-linear gluon interaction
2.0F ¢

. 1 What tames the low-x rise?
015 gluon recombination
N — non-linear gluon interaction

00001 0001 001 0.1 1.0
Fraction of Overall Proton Momentum Carried by Parton

Gluon saturation — Color Glass Condensate
Radiation = Recombination

o O
pQCD

evomnon
equauon

s @ Leading to a collective gluonic system?

with a universal property?

A

saturation

non-perturbative region % new effective theory QCD - CGC?

In x




An “easiest” measurement at EIC

4 Ratio of F,: EMC effect, Shadowing and Saturation:

v,

AN Sl

Color localized
inside nucleons

/ Fermi motion

B original

1h5
1 ® EMC
i ® NMC
L E139
a, ] *Ee665 s ® i—}i '
e 17 % =
S 3 -
B og] > /
: ;e i/ \ —-L'\
0.8
{ shadowing Y
0.7
0.001 0.1

001 I
sea qualk X

T -I.vAv

EMC finding
1

valence quark



An “easiest” measurement at EIC

4 Ratio of F,: EMC effect, Shadowing and Saturation:

v,

AN Sl

Color localized
inside nucleons

J Questions:

Fermi motion

1.2

b~

® EMC
] *NMC
1.1 + E139
a + E665
hamgt | %
N i
=

dowing

|

B original

EMC finding

0.01

AN Sl

0.1

_#

\ Color leaks outside

1
valence quark

nucleons

Will the suppression/shadowing continue fall as x decreases?
Could nucleus behaves as a large proton at small-x?
Range of color correlation — could impact the center of neutron stars!



An “easiest” measurement at EIC

4 Ratio of F,: EMC effect, Shadowing and Saturation:

v,

AN Sl

Color localized
inside nucleons

Saturation in RF,

No saturation in F,A

Fermi motion

1.2

1.17

® EMC
® NMC

E139
¢+ E665

b~

J Questions:

|

B original

EMC finding

1
valence quark

Color leaks outside
nucleons

Will the suppression/shadowing continue fall as x decreases?
Could nucleus behaves as a large proton at small-x?
Range of color correlation — could impact the center of neutron stars!



An “easiest” measurement at EIC

4 Ratio of F,: EMC effect, Shadowing and Saturation:

v,

AN Sl

Fermi motion

1.2

1.17

Color localized
inside nucleons

Continuously fall

® EMC
® NMC

E139
¢+ E665

b~

|

B original

EMC finding

saturation in FXA/

d

J Questions:

1
valence quark

Color leaks outside
nucleons

Will the suppression/shadowing continue fall as x decreases?
Could nucleus behaves as a large proton at small-x?
Range of color correlation — could impact the center of neutron stars!



An “easiest” measurement at EIC

4 Ratio of F,: EMC effect, Shadowing and Saturation:
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Will the suppression/shadowing continue fall as x decreases?
Could nucleus behaves as a large proton at small-x?

Range of color correlation — could impact the center of neutron stars!




Emergence of hadron at EIC

1 Fermi-side detectors — nuclei:

>MM... éﬁ,ﬁzlﬁ’ Control of ¥ and
| medium length!

d Heavy quark energy loss:
- Mass dependence of fragmentation

| Pions (lower energy)
+ © DO mesons (higher energy)
Pions (higher energy)
———=Wang, pions (lower energy)
-Wang, pions (higher energy)
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o° Need the collider energy of EIC

and its control on parton kinematics



Color fluctuation — azimuthal asymmetry at EIC

o Hicks, KEK-JPAC2013
4 Preliminary low energy data:

; lead
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(AP D)an = ()4 — GHO)N - - :
Contain terms in cos( ¢ ,,) and cos(2¢ ,,)

] ) only statistical uncertainties shown
 Classical expectation:

Any distribution seen in Carbon should be washed out in heavier nuclei
4 Surprise:
Azimuthal asymmetry in transverse momentum broadening
mm) Fluctuation and v, at EIC!



Color fluctuation — azimuthal asymmetry at EIC

.. Hicks, KEK-JPAC2013
4 Preliminary low energy data:
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-

4 Surprise:

Pravide important information for the initial
Azimuthal asymmet conditions in Nucleus-Nucleus Collisions

— Fluctuation and v, at EIC!



Summary

4 EIC is a ultimate QCD machine:
1) to discover and explore the quark/gluon structure and
properties of hadrons and nuclei,
2) to search for hints and clues of color confinement, and
3) to measure the color fluctuation and color neutralization

d EIC is a tomographic machine for nucleons and nuclei
with a resolution better than 1/10 fm

1 EIC designs explore the polarization and intensity frontier,
as well as the frontier of new accelerator/detector technology

O EIC@US is sitting at a sweet spot for rich QCD dynamics
— capable of taking us to the next QCD frontier

Thanks!



US EIC - Physics vs. Luminosity & Energies
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