Y-Y collisions at ILC

Tomoyuki SANUKI (Tohoku U.)

1. What is the ILC ?

2. Two photon process in the current ILC study

3. Future prospects

What is the ILC ?

International Linear Collider

more than 1,000 scientists and engineers from more than 100 universities and laboratories in over two dozen countries.

LCC organization from Dec. 2016

CM energy : 250GeV \rightarrow 500GeV \rightarrow 1000GeV Total Length : 20km \rightarrow 30km \rightarrow 50km Candidate site: Kitakami mountains (Iwate/Miyagi)

e⁺e⁻ colliders

 $\Delta P_{\rm SR} = -(E/m)^4 R^{-1}$

PEP 29GeV PETRA 39GeV TRISTAN 60GeV

LEP/LEP II 100/209GeV *C*=27km

SLC 91GeV L=3km

e⁺e⁻ colliders

 $\Delta P_{\rm SR} = -(E/m)^4 R^{-1}$

LEP/LEP II 100/209GeV C=27km

ILC 250GeV - 1000GeV *L*=20km - 50km

extendibility to higher energies

CG by rey.hori

Part and

© Rey.Hori/KEK

KEK-STF

https://www.kek.jp/ja/Research/AAT/ILC/

XFEL The End of Main Linac Section L3

100 modules cf. 837 modules in ILC250

XFEL started commissioning from 2017

TTC Meeting – February 2017 Hans Weise, DESY

Max 6000 kg

Table 2.1. Summary table of the 200–500 GeV baseline parameters for the ILC. The reported luminosity numbers are results of simulation [12]

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power	P_{AC}	MW	114	119	122	121	163
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	n_b		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function at IP	eta_x^*	mm	16	14	13	16	11
Vertical beta function at IP	β_y^*	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size at IP	σ_{y}^{*}	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$ imes 10^{34}~{ m cm^{-2}s^{-1}}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

Fixed target experiment with polarized beam

THE INTERNATIONAL LINEAR COLLIDER

Gateway to the Quantum Universe

PASSPORT

The discovery of a Higgs boson in 2012 at the Large Hadron Collider (LHC) at CERN is one of the most significant recent breakthroughs in science and marks a major step forward in fundamental physics. Precision studies of the Higgs boson will further deepen our understanding of the most fundamental laws of matter and its interactions.

Important Energies in ILC

The Standard Model

125 GeV Higgs discovery reinforcing the ILC importance

Higgs looks like

LHC:p+p

ILC : e+e-

ILC Time Line: Progress and Prospect

• Linear Collider • "economical" machine (ΔP_{SR}) extendibility to higher energies Electron-Positron Collider • "clean" environment large discovery potential precision studies of the Higgs boson

Two photon process in the current ILC study

1312x5=6560 BX's/sec

Summary of Backgrounds

The background sources have been investigated in various studies. For example, the beam-beam interaction and pair generation, radiative Bhabhas, disrupted beams and beamstrahlung photons for the 500 GeV ILC were studied with GUINEAPIG [333]. Also, the $\gamma\gamma$ hadronic cross section was approximated in the Peskin-Barklow scheme [2]. Based on these studies densities of particles which will reach the different sun-detectors have been estimated. Table I-1.3 summarises these estimates.

Table I-1.3 Background sources for the nominal 500 GeV	Source	#particles per bunch	< E > (GeV)	
beam parameters.	Disrupted primary beam Bremstrahlung photons	2×10^{10} 2.5×10^{10}	244 244	
	e ⁺ e ⁻ pairs from beam-beam inter- actions	75k	2.5	
	Radiative Bhabhas $\gamma\gamma ightarrow$ hadrons/muons	$320 {\sf k}$ 0.5 events/1.3 events	195 —	

$\gamma \gamma$ = background !!

Hadron Production in Photon-Photon Processes at the ILC and the BSM signatures with small mass differences

American Workshop for Linear Colliders

<u>Swathi Sasikumar</u>, Jenny List, Mikael Berggren 26-30th June 2017

DBD simulations for $\gamma\gamma \rightarrow$ low pt hadron events

- In DBD simulations:
 - Overlaid number of $\gamma\gamma$ events on each physics event (1.7 evnts/BX)
 - $\gamma\gamma \rightarrow \text{low } p_T$ hadron event generation by Tim Barklow
 - + $\sqrt{s_{\gamma\gamma}}$ < 10 GeV dedicated generator by Tim (Barklow generator)
 - $\sqrt{s_{\gamma\gamma}}$ > 10 GeV Pythia
- > Removal of $\gamma\gamma$ backgrounds by applied k_T algorithm method
- In most of the cases k_T algorithm method a success to regain the physics performance
- Analysis for higgsinos still an exception to k_T algorithm method the low pt visible decay products misidentified as *\(\gamma\)* overlay in exclusive mode and discarded

Event Properties of old and new Barklow generator

- Improvements implemented in Barklow generator for $\sqrt{s_{\gamma\gamma}} < 2 \text{ GeV}$
- > Event Properties before improvements:
 - Barklow generator produced $\gamma\gamma \rightarrow \text{low Pt}$ hadron processes with very simple events
 - $\pi^{+}\pi^{-}$ $\pi^{\pm}\rho^{\pm}$ $\rho^{+}\rho^{-}$
 - No neutral mesons included no ho^0 or π^0
- Event Properties after improvements:
 - The Barklow generator produces different events like

$$\gamma\gamma \to \pi^0\pi^0, \pi^\pm, \rho^0\rho^0, \rho^\pm, \omega$$

• The cross-sections for producing ρ^0 is greater than that for ρ^\pm

Swathi Sasikumar | Hadron Production in photon-photon processes | 26-06-17 | Page

Event Properties of old and new Barklow generator

- > PDG: m_{ρ} = 770 MeV and Γ_{ρ} = 145 MeV
- > Before improvement:
 - Barklow generator produced rho meson without natural width - peaked at 770 MeV
- > After improvement:
 - The improved generator now produces rho mesons with full natural width

Summary and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma \rightarrow$ low pt hadrons was developed with more realistic particle contents for events
- Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- > Work in progress!!

> OUTLOOK:

The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of $\gamma\gamma$ overlay

• Few studies of two photon processes, so far

Future prospects

Improve / implement γ-γ generator is essential for future study

Summary

 extendibility to higher energies • precision studies of the Higgs boson • waiting for "Green Light" Two photon process • Few studies, so far. • Improve / implement γ - γ generator is essential for future study