Energy momentum tensor on lattice

Hiroshi Suzuki

Kyushu University

2017/11/30 @ KEK Tokai Campus

- H.S., Prog. Theor. Exp. Phys. (2013) 083B03 [arXiv:1304.0533 [hep-lat]]
- H. Makino and H.S., Prog. Theor. Exp. Phys. (2014) 063B02 [arXiv:1403.4772 [hep-lat]]
- M. Asakawa, T. Hatsuda, E. Itou, M. Kitazawa, H.S., Phys. Rev. D90 (2014) 011501 [arXiv:1312.7492 [hep-lat]]

 Y. Taniguchi, S. Ejiri, R. Iwami, K. Kanaya, M. Kitazawa, H.S., T. Umeda and N. Wakabayashi, Phys. Rev. D 96, no. 1, 014509 (2017) [arXiv:1609.01417 [hep-lat]]

Gravity vs energy-momentum tensor (EMT)

• EMT $T_{\mu\nu}$ is a source of the Einstein gravity:

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}R=8\pi G T_{\mu
u},$$

where (assuming the Euclidean signature)

$$T_{\mu
u} = rac{2}{\sqrt{g}}rac{\delta S}{\delta g^{\mu
u}}.$$

Gravity vs energy-momentum tensor (EMT)

• EMT $T_{\mu\nu}$ is a source of the Einstein gravity:

$$R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=8\pi GT_{\mu\nu},$$

where (assuming the Euclidean signature)

$$T_{\mu
u} = rac{2}{\sqrt{g}}rac{\delta S}{\delta g^{\mu
u}}.$$

• For the gluon field,

$$\mathcal{S}=rac{1}{4g_0^2}\int d^4x\,\sqrt{g}g^{\mu
u}g^{
ho\sigma}\mathcal{F}^a_{\mu
ho}\mathcal{F}^a_{
u\sigma},$$

for instance, we have

$$T_{\mu
u}=rac{1}{g_0^2}\left(g^{
ho\sigma}F^a_{\mu
ho}F^a_{
u\sigma}-rac{1}{4}g_{\mu
u}g^{
ho\sigma}g^{\lambda au}F^a_{
ho\lambda}F^a_{\sigma au}
ight).$$

Hiroshi Suzuki (Kyushu University)

• In flat spacetime $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, EMT is the Noether current associated with the translational invariance:

If
$$\delta S = 0$$
 under $\delta \varphi(x) = \xi_{\mu} \partial_{\mu} \varphi(x)$,

then

$$\mathcal{T}_{\mu\nu}^{\text{canonical}} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \varphi} \partial_{\nu} \varphi - \delta_{\mu\nu} \mathcal{L}, \qquad \mathcal{S} = \int d^4 x \, \mathcal{L},$$

is a conserved Noether current

$$\partial_{\mu} T^{\text{canonical}}_{\mu
u} = \mathbf{0}.$$

• In flat spacetime $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, EMT is the Noether current associated with the translational invariance:

If
$$\delta S = 0$$
 under $\delta \varphi(x) = \xi_{\mu} \partial_{\mu} \varphi(x)$,

then

$$\mathcal{T}^{ ext{canonical}}_{\mu
u} = rac{\partial \mathcal{L}}{\partial \partial_{\mu} arphi} \partial_{
u} arphi - \delta_{\mu
u} \mathcal{L}, \qquad \mathcal{S} = \int d^4 x \, \mathcal{L},$$

is a conserved Noether current

$$\partial_{\mu} T^{\text{canonical}}_{\mu\nu} = 0.$$

• Again, for the gluon field,

$$S = rac{1}{4g_0^2}\int d^4x\,F^a_{\mu
u}F^a_{\mu
u},$$

we have

$$T_{\mu\nu}^{\text{canonical}} = \frac{1}{g_0^2} \left(F_{\mu\rho}^a \partial_\nu A_\rho^a - \frac{1}{4} \delta_{\mu\nu} F_{\rho\sigma}^a F_{\rho\sigma}^a \right)$$

.

• The above canonical EMT $T_{\mu\nu}^{\text{canonical}}$ is not quite identical to the symmetric (and gauge invariant) $T_{\mu\nu}$ even for $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, but this point can be remedied as

$$\mathcal{T}_{\mu
u} = \mathcal{T}^{ ext{canonical}}_{\mu
u} - rac{1}{g_0^2} \partial_
ho \left(\mathcal{F}^a_{\mu
ho} \mathcal{A}^a_
u
ight) + (ext{equation of motion}).$$

• The above canonical EMT $T_{\mu\nu}^{\text{canonical}}$ is not quite identical to the symmetric (and gauge invariant) $T_{\mu\nu}$ even for $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, but this point can be remedied as

$$T_{\mu
u} = T^{ ext{canonical}}_{\mu
u} - rac{1}{g_0^2} \partial_
ho \left(F^a_{\mu
ho} A^a_
u
ight) + (ext{equation of motion}).$$

• EMT is the conserved current associated with the translational invariance, a very fundamental observable.

• The above canonical EMT $T_{\mu\nu}^{\text{canonical}}$ is not quite identical to the symmetric (and gauge invariant) $T_{\mu\nu}$ even for $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, but this point can be remedied as

$$T_{\mu
u} = T^{ ext{canonical}}_{\mu
u} - rac{1}{g_0^2} \partial_
ho \left(F^a_{\mu
ho} A^a_
u
ight) + (ext{equation of motion}).$$

- EMT is the conserved current associated with the translational invariance, a very fundamental observable.
- Energy, momentum, angular-momentum, pressure, stress, viscosity, specific heat, renormalization group functions,

• The above canonical EMT $T_{\mu\nu}^{\text{canonical}}$ is not quite identical to the symmetric (and gauge invariant) $T_{\mu\nu}$ even for $g_{\mu\nu} \rightarrow \delta_{\mu\nu}$, but this point can be remedied as

$$T_{\mu
u} = T^{ ext{canonical}}_{\mu
u} - rac{1}{g_0^2} \partial_
ho \left(F^a_{\mu
ho} A^a_
u
ight) + (ext{equation of motion}).$$

- EMT is the conserved current associated with the translational invariance, a very fundamental observable.
- Energy, momentum, angular-momentum, pressure, stress, viscosity, specific heat, renormalization group functions, ...
- We are interested in, for instance

 $\langle \text{baryon} | T_{\mu\nu} | \text{baryon} \rangle$.

 T_{00} : mass, T_{0i} : (angular-)momentum, (more ambitiously, coupling to the gravity).

• Best-understood approach is lattice regularization:

• Best-understood approach is lattice regularization:

• The lattice however breaks the translational invariance!

• Best-understood approach is lattice regularization:

- The lattice however breaks the translational invariance!
- No simple way to define EMT.

• Best-understood approach is lattice regularization:

- The lattice however breaks the translational invariance!
- No simple way to define EMT.
- Naive lattice discretization of

$$T_{\mu
u} = rac{1}{g_0^2} \left(F^a_{\mu
ho} F^a_{
u
ho} - rac{1}{4} \delta_{\mu
u} F^a_{
ho\sigma} F^a_{
ho\sigma}
ight),$$

is neither correctly normalized nor conserved, even in the continuum limit $a \rightarrow 0$.

• The origin of the trouble is that EMT

$$T_{\mu\nu} = \frac{1}{g_0^2} \left(F^a_{\mu\rho} F^a_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma} F^a_{\rho\sigma} \right)$$

is a local product (composite operator) of fields in QFT.

• The origin of the trouble is that EMT

$$T_{\mu\nu} = \frac{1}{g_0^2} \left(F^a_{\mu\rho} F^a_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma} F^a_{\rho\sigma} \right)$$

is a local product (composite operator) of fields in QFT.

• Propagator diverges as $x \rightarrow y$:

$$\langle \varphi(x)\varphi(y)\rangle = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-y)}}{k^2} \stackrel{x\to y}{\longrightarrow} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2} = \infty.$$

• The origin of the trouble is that EMT

$$T_{\mu\nu} = \frac{1}{g_0^2} \left(F^a_{\mu\rho} F^a_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma} F^a_{\rho\sigma} \right)$$

is a local product (composite operator) of fields in QFT.

• Propagator diverges as $x \rightarrow y$:

$$\langle \varphi(x)\varphi(y)\rangle = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-y)}}{k^2} \stackrel{x\to y}{\longrightarrow} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2} = \infty.$$

• Then, something quite strange such as the trace anomaly,

$$T_{\mu\mu} = -rac{eta(g)}{2g^3} \{F_{\mu
u}F_{\mu
u}\}_R
eq 0 \qquad \Leftrightarrow \qquad \partial_\mu T_{\mu
u} = 0$$

can occur (0 $\times \infty = 1$).

• The origin of the trouble is that EMT

$$T_{\mu\nu} = \frac{1}{g_0^2} \left(F^a_{\mu\rho} F^a_{\nu\rho} - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma} F^a_{\rho\sigma} \right)$$

is a local product (composite operator) of fields in QFT.

• Propagator diverges as $x \rightarrow y$:

$$\langle \varphi(x)\varphi(y)\rangle = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik(x-y)}}{k^2} \stackrel{x\to y}{\longrightarrow} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2} = \infty.$$

Then, something quite strange such as the trace anomaly,

$$T_{\mu\mu} = -rac{eta(g)}{2g^3} \{F_{\mu
u}F_{\mu
u}\}_R
eq 0 \qquad \Leftrightarrow \qquad \partial_\mu T_{\mu
u} = 0$$

can occur (0 $\times \infty = 1$).

More ingenious approach is necessary...

 Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is an evolution of the gluon field along a fictitious time t; the initial value is the original gluon field:

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

The evolution for t > 0 is defined by

$$\partial_t B^a_\mu(t,x) = -g_0^2 rac{\delta S}{\delta B^a_\mu(t,x)} = D_
u G^a_{
u\mu}(t,x) = \Delta B^a_\mu(t,x) + \cdots,$$

where $D_{\nu}G^{a}_{\nu\mu} = \partial_{\nu}G^{a}_{\nu\mu} + f^{abc}B^{b}_{\nu}G^{c}_{\nu\mu}$ and $G^{a}_{\mu\nu} = \partial_{\mu}B^{a}_{\nu} - \partial_{\nu}B^{a}_{\mu} + f^{abc}B^{b}_{\mu}B^{c}_{\nu}$.

 Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is an evolution of the gluon field along a fictitious time t; the initial value is the original gluon field:

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

The evolution for t > 0 is defined by

$$\partial_t B^a_\mu(t,x) = -g_0^2 rac{\delta S}{\delta B^a_\mu(t,x)} = D_
u G^a_{
u\mu}(t,x) = \Delta B^a_\mu(t,x) + \cdots,$$

where $D_{\nu}G^{a}_{\nu\mu} = \partial_{\nu}G^{a}_{\nu\mu} + f^{abc}B^{b}_{\nu}G^{c}_{\nu\mu}$ and $G^{a}_{\mu\nu} = \partial_{\mu}B^{a}_{\nu} - \partial_{\nu}B^{a}_{\mu} + f^{abc}B^{b}_{\mu}B^{c}_{\nu}$.

• A diffusion equation with the diffusion length $\sim \sqrt{8t}$.

 Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is an evolution of the gluon field along a fictitious time t; the initial value is the original gluon field:

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

The evolution for t > 0 is defined by

$$\partial_t B^a_\mu(t,x) = -g_0^2 rac{\delta S}{\delta B^a_\mu(t,x)} = D_
u G^a_{
u\mu}(t,x) = \Delta B^a_\mu(t,x) + \cdots,$$

where $D_{\nu}G^{a}_{\nu\mu} = \partial_{\nu}G^{a}_{\nu\mu} + f^{abc}B^{b}_{\nu}G^{c}_{\nu\mu}$ and $G^{a}_{\mu\nu} = \partial_{\mu}B^{a}_{\nu} - \partial_{\nu}B^{a}_{\mu} + f^{abc}B^{b}_{\mu}B^{c}_{\nu}$.

• A diffusion equation with the diffusion length $\sim \sqrt{8t}$.

 Any local product of flowed gluon fields B_μ is a renormalized finite operator (Lüscher–Weisz (2011)).

 Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is an evolution of the gluon field along a fictitious time t; the initial value is the original gluon field:

$$B_{\mu}(t=0,x)=A_{\mu}(x).$$

The evolution for t > 0 is defined by

$$\partial_t B^a_\mu(t,x) = -g_0^2 rac{\delta S}{\delta B^a_\mu(t,x)} = D_
u G^a_{
u\mu}(t,x) = \Delta B^a_\mu(t,x) + \cdots,$$

where
$$D_{\nu}G^{a}_{\nu\mu} = \partial_{\nu}G^{a}_{\nu\mu} + f^{abc}B^{b}_{\nu}G^{c}_{\nu\mu}$$
 and $G^{a}_{\mu\nu} = \partial_{\mu}B^{a}_{\nu} - \partial_{\nu}B^{a}_{\mu} + f^{abc}B^{b}_{\mu}B^{c}_{\nu}$.

• A diffusion equation with the diffusion length $\sim \sqrt{8t}$.

- Any local product of flowed gluon fields B_μ is a renormalized finite operator (Lüscher–Weisz (2011)).
- Such a renormalized operator is independent of regularization

Our strategy

• We bridge lattice regularization and dimensional regularization which preserves the translational invariance, by using a flowed fields as an intermediate tool.

Our strategy

- We bridge lattice regularization and dimensional regularization which preserves the translational invariance, by using a flowed fields as an intermediate tool.
- Schematically,

Our strategy

- We bridge lattice regularization and dimensional regularization which preserves the translational invariance, by using a flowed fields as an intermediate tool.
- Schematically,

Dimensional regularization,

$$4 \rightarrow D = 4 - 2\epsilon$$

preserves both the gauge symmetry and the translational invariance, but, this is defined only in perturbation theory.

Hiroshi Suzuki (Kyushu University)

Regularization indep. expression of EMT (H.S. (2013), Makino–H.S. (2014))

Universal formula

$$T_{\mu\nu}(x) = \lim_{t \to 0} \left\{ c_1(t) G^a_{\mu\rho}(t, x) G^a_{\nu\rho}(t, x) + \left[c_2(t) - \frac{1}{4} c_1(t) \right] \delta_{\mu\nu} G^a_{\rho\sigma}(t, x) G^a_{\rho\sigma}(t, x) \right. \\ \left. + c_3(t) \mathring{\chi}(t, x) \left(\gamma_\mu \overleftrightarrow{D}_\nu + \gamma_\nu \overleftrightarrow{D}_\mu \right) \mathring{\chi}(t, x) \right. \\ \left. + \left[c_4(t) - 2c_3(t) \right] \delta_{\mu\nu} \mathring{\chi}(t, x) \overleftrightarrow{D} \mathring{\chi}(t, x) + c_5'(t) \mathring{\chi}(t, x) \mathring{\chi}(t, x) - \mathsf{VEV} \right\}$$

where (denotes running parameters in MS scheme)

$$\begin{split} c_1(t) &= \frac{1}{\tilde{g}(1/\sqrt{8t})^2} - b_0 \ln \pi - \frac{1}{(4\pi)^2} \left[\frac{7}{3} C_2(G) - \frac{3}{2} T(R) N_{\rm f} \right], \\ c_2(t) &= \frac{1}{8} \frac{1}{(4\pi)^2} \left[\frac{11}{3} C_2(G) + \frac{11}{3} T(R) N_{\rm f} \right], \quad c_3(t) = \frac{1}{4} \left\{ 1 + \frac{\tilde{g}(1/\sqrt{8t})^2}{(4\pi)^2} C_2(R) \left[\frac{3}{2} + \ln(432) \right] \right\}, \\ c_4(t) &= \frac{1}{8} d_0 \tilde{g}(1/\sqrt{8t})^2, \qquad c_5'(t) = -\tilde{m}(1/\sqrt{8t}) \left\{ 1 + \frac{\tilde{g}(1/\sqrt{8t})^2}{(4\pi)^2} C_2(R) \left[3 \ln \pi + \frac{7}{2} + \ln(432) \right] \right\} \\ (b_0 &= \frac{1}{(4\pi)^2} \left[\frac{11}{3} C_2(G) - \frac{4}{3} T(R) N_{\rm f} \right] \text{ and } d_0 = \frac{1}{(4\pi)^2} 6 C_2(R)). \end{split}$$

Hiroshi Suzuki (Kyushu University)

 Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration)

- Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration)
- Thermodynamic quantities (trace anomaly, entropy density):

$$\langle \varepsilon - \mathbf{3} p \rangle = - \langle T_{\mu\mu} \rangle, \qquad \langle \varepsilon + p \rangle = - \langle T_{00} \rangle + \frac{1}{3} \sum_{i=1,2,3} \langle T_{ii} \rangle.$$

- Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD Collaboration)
- Thermodynamic quantities (trace anomaly, entropy density):

$$\langle \varepsilon - 3p \rangle = - \langle T_{\mu\mu} \rangle, \qquad \langle \varepsilon + p \rangle = - \langle T_{00} \rangle + \frac{1}{3} \sum_{i=1,2,3} \langle T_{ii} \rangle.$$

• $a = 0.013 - 0.061 \text{ fm} \ll \sqrt{8t}$, number of configs. $\sim 1000 - 2000$:

Hiroshi Suzuki (Kyushu University)

Energy momentum tensor on...

Trace anomaly and the entropy density

Ref. [1]: Boyd et al. (1996), Ref. [4]: Borsanyi et al. (2012), obtained by the integral method.

Trace anomaly and the entropy density

Ref. [1]: Boyd et al. (1996), Ref. [4]: Borsanyi et al. (2012), obtained by the integral method.

• Works perfectly! No doubt on our reasoning.

Thermodynamic quantities in the $N_f = 2 + 1$ QCD

- Ejiri–Iwami–Kanaya–Kitazawa–H.S.–Taniguchi–Umeda– Wakabayashi [WHOT-QCD Collaboration]
- a = 0.070 fm fixed, $m_{\pi}/m_{\rho} \simeq 0.63$, $m_{\eta_{ss}}/m_{\phi} \simeq 0.74$, $N_s = 32$, number of configs. $\sim 100-1000$.

Figure: $(e - 3p)/T^4$, T = 232 MeV Figure: $(e + p)/T^4$, T = 232 MeV

Thermodynamic quantities in the $N_f = 2 + 1$ QCD

• a = 0.070 fm fixed, $m_{\pi}/m_{\rho} \simeq 0.63$, $m_{\eta_{ss}}/m_{\phi} \simeq 0.74$, $N_s = 32$, number of configs. $\sim 100-1000$.

Figure: $(e - 3p)/T^4$, T = 279 MeV Figure: $(e + p)/T^4$, T = 279 MeV

Thermodynamic quantities in the $N_f = 2 + 1$ QCD

• a = 0.070 fm fixed, $m_{\pi}/m_{\rho} \simeq 0.63$, $m_{\eta_{ss}}/m_{\phi} \simeq 0.74$, $N_s = 32$, number of configs. $\sim 100-1000$.

Figure: Black: T. Umeda et al. [WHOT-QCD Collaboration] (2012) [WHOT-QCD Collaboration] (2012) We derived a regularization-independent representation of EMT in vector-like gauge theories through the gradient flow ⇒ Applicable to lattice gauge theory.

- We derived a regularization-independent representation of EMT in vector-like gauge theories through the gradient flow ⇒ Applicable to lattice gauge theory.
- The 1 point function of EMT at finite temperature shows rather promising results.

- We derived a regularization-independent representation of EMT in vector-like gauge theories through the gradient flow ⇒ Applicable to lattice gauge theory.
- The 1 point function of EMT at finite temperature shows rather promising results.
- We are now carrying out the computation with physical quark mass (K. Kanaya et al. [WHOT-QCD Collaboration], arXiv:1710.10015). Fairly good results.

Recently, study of the 2 point correlation function

 $\langle T_{\mu\nu}(x)T_{\rho\sigma}(y)\rangle$

has initiated (M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, arXiv:1708.01415; Y. Taniguchi et al. [WHOT-QCD Collaboration], arXiv:1711.02262) to examine the conservation law, linear response relations, the feasibility of the viscosity computation, etc. Recently, study of the 2 point correlation function

 $\langle T_{\mu\nu}(x)T_{\rho\sigma}(y)\rangle$

has initiated (M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, arXiv:1708.01415; Y. Taniguchi et al. [WHOT-QCD Collaboration], arXiv:1711.02262) to examine the conservation law, linear response relations, the feasibility of the viscosity computation, etc.

• The study of the hadronic matrix element

 $\langle \text{hadron} | T_{\mu\nu}(x) | \text{hadron} \rangle$

will also be interesting (ex. the spin structure).

• Recently, study of the 2 point correlation function

 $\langle T_{\mu\nu}(x)T_{\rho\sigma}(y)\rangle$

has initiated (M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, arXiv:1708.01415; Y. Taniguchi et al. [WHOT-QCD Collaboration], arXiv:1711.02262) to examine the conservation law, linear response relations, the feasibility of the viscosity computation, etc.

• The study of the hadronic matrix element

 $\langle \text{hadron} | T_{\mu\nu}(x) | \text{hadron} \rangle$

will also be interesting (ex. the spin structure).

• Also for the gravitational physics?