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Gravity vs energy–momentum tensor (EMT)

EMT Tµν is a source of the Einstein gravity:

Rµν −
1
2

gµνR = 8πGTµν ,

where (assuming the Euclidean signature)

Tµν =
2
√

g
δS
δgµν

.

For the gluon field,

S =
1

4g2
0

ˆ
d4x
√

ggµνgρσF a
µρF a

νσ,

for instance, we have

Tµν =
1
g2

0

(
gρσF a

µρF a
νσ −

1
4

gµνgρσgλτF a
ρλF a

στ

)
.
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Another characterization of EMT

In flat spacetime gµν → δµν , EMT is the Noether current
associated with the translational invariance:

If δS = 0 under δφ(x) = ξµ∂µφ(x),

then
T canonical
µν =

∂L
∂∂µφ

∂νφ− δµνL, S =

ˆ
d4x L,

is a conserved Noether current

∂µT canonical
µν = 0.

Again, for the gluon field,

S =
1

4g2
0

ˆ
d4x F a

µνF a
µν ,

we have

T canonical
µν =

1
g2

0

(
F a
µρ∂νAa

ρ −
1
4
δµνF a

ρσF a
ρσ

)
.
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Another characterization of EMT

The above canonical EMT T canonical
µν is not quite identical to the

symmetric (and gauge invariant) Tµν even for gµν → δµν , but this
point can be remedied as

Tµν = T canonical
µν − 1

g2
0
∂ρ

(
F a
µρAa

ν

)
+ (equation of motion).

EMT is the conserved current associated with the translational
invariance, a very fundamental observable.
Energy, momentum, angular-momentum, pressure, stress,
viscosity, specific heat, renormalization group functions, . . .
We are interested in, for instance

⟨baryon|Tµν |baryon⟩ .

T00: mass, T0i : (angular-)momentum, (more ambitiously, coupling
to the gravity).
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Non-perturbative calculation in gauge theories

Best-understood approach is lattice regularization:

a

The lattice however breaks the translational invariance!
No simple way to define EMT.
Naive lattice discretization of

Tµν =
1
g2

0

(
F a
µρF a

νρ −
1
4
δµνF a

ρσF a
ρσ

)
,

is neither correctly normalized nor conserved, even in the
continuum limit a→ 0.
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EMT in quantum field theory

The origin of the trouble is that EMT

Tµν =
1
g2

0

(
F a
µρF a

νρ −
1
4
δµνF a

ρσF a
ρσ

)
is a local product (composite operator) of fields in QFT.

Propagator diverges as x → y :

⟨φ(x)φ(y)⟩ =
ˆ

d4k
(2π)4

eik(x−y)

k2
x→y−→
ˆ

d4k
(2π)4

1
k2 =∞.

Then, something quite strange such as the trace anomaly,

Tµµ = −β(g)
2g3 {FµνFµν}R ̸= 0 ⇔ ∂µTµν = 0

can occur (0×∞ = 1).
More ingenious approach is necessary. . .
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Gradient flow

Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is
an evolution of the gluon field along a fictitious time t ; the initial
value is the original gluon field:

Bµ(t = 0, x) = Aµ(x).

The evolution for t > 0 is defined by

∂tBa
µ(t , x) = −g2

0
δS

δBa
µ(t , x)

= DνGa
νµ(t , x) = ∆Ba

µ(t , x) + · · · ,

where DνGa
νµ = ∂νGa

νµ + f abcBb
νGc

νµ and
Ga

µν = ∂µBa
ν − ∂νBa

µ + f abcBb
µBc

ν .

A diffusion equation with the diffusion length ∼
√

8t .
Any local product of flowed gluon fields Bµ is a renormalized finite
operator (Lüscher–Weisz (2011)).
Such a renormalized operator is independent of regularization

Hiroshi Suzuki (Kyushu University) Energy momentum tensor on. . . 2017/11/30 @ KEK Tokai 7 / 16



Gradient flow

Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is
an evolution of the gluon field along a fictitious time t ; the initial
value is the original gluon field:

Bµ(t = 0, x) = Aµ(x).

The evolution for t > 0 is defined by

∂tBa
µ(t , x) = −g2

0
δS

δBa
µ(t , x)

= DνGa
νµ(t , x) = ∆Ba

µ(t , x) + · · · ,

where DνGa
νµ = ∂νGa

νµ + f abcBb
νGc

νµ and
Ga

µν = ∂µBa
ν − ∂νBa

µ + f abcBb
µBc

ν .

A diffusion equation with the diffusion length ∼
√

8t .

Any local product of flowed gluon fields Bµ is a renormalized finite
operator (Lüscher–Weisz (2011)).
Such a renormalized operator is independent of regularization

Hiroshi Suzuki (Kyushu University) Energy momentum tensor on. . . 2017/11/30 @ KEK Tokai 7 / 16



Gradient flow

Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is
an evolution of the gluon field along a fictitious time t ; the initial
value is the original gluon field:

Bµ(t = 0, x) = Aµ(x).

The evolution for t > 0 is defined by

∂tBa
µ(t , x) = −g2

0
δS

δBa
µ(t , x)

= DνGa
νµ(t , x) = ∆Ba

µ(t , x) + · · · ,

where DνGa
νµ = ∂νGa

νµ + f abcBb
νGc

νµ and
Ga

µν = ∂µBa
ν − ∂νBa

µ + f abcBb
µBc

ν .

A diffusion equation with the diffusion length ∼
√

8t .
Any local product of flowed gluon fields Bµ is a renormalized finite
operator (Lüscher–Weisz (2011)).

Such a renormalized operator is independent of regularization

Hiroshi Suzuki (Kyushu University) Energy momentum tensor on. . . 2017/11/30 @ KEK Tokai 7 / 16



Gradient flow

Gradient flow (Narayanan–Neuberger (2006), Lüscher (2010)) is
an evolution of the gluon field along a fictitious time t ; the initial
value is the original gluon field:

Bµ(t = 0, x) = Aµ(x).

The evolution for t > 0 is defined by

∂tBa
µ(t , x) = −g2

0
δS

δBa
µ(t , x)

= DνGa
νµ(t , x) = ∆Ba

µ(t , x) + · · · ,

where DνGa
νµ = ∂νGa

νµ + f abcBb
νGc

νµ and
Ga

µν = ∂µBa
ν − ∂νBa

µ + f abcBb
µBc

ν .

A diffusion equation with the diffusion length ∼
√

8t .
Any local product of flowed gluon fields Bµ is a renormalized finite
operator (Lüscher–Weisz (2011)).
Such a renormalized operator is independent of regularization

Hiroshi Suzuki (Kyushu University) Energy momentum tensor on. . . 2017/11/30 @ KEK Tokai 7 / 16



Our strategy

We bridge lattice regularization and dimensional regularization
which preserves the translational invariance, by using a flowed
fields as an intermediate tool.

Schematically,

regularization independent

flowed fields
dimensional lattice

correct EMT low energy correlation functions

Dimensional regularization,

4→ D = 4− 2ϵ,

preserves both the gauge symmetry and the translational
invariance, but, this is defined only in perturbation theory.
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Regularization indep. expression of EMT (H.S. (2013),
Makino–H.S. (2014))

Universal formula

Tµν(x)

= lim
t→0

{
c1(t)Ga

µρ(t , x)G
a
νρ(t , x) +

[
c2(t)−

1
4

c1(t)
]
δµνGa

ρσ(t , x)G
a
ρσ(t , x)

+ c3(t)˚̄χ(t , x)
(
γµ
←→
D ν + γν

←→
D µ

)
χ̊(t , x)

+ [c4(t)− 2c3(t)] δµν ˚̄χ(t , x)
←→
/D χ̊(t , x) + c′

5(t)˚̄χ(t , x)χ̊(t , x)− VEV
}
,

where (¯ denotes running parameters in MS scheme)

c1(t) =
1

ḡ(1/
√

8t)2
− b0 ln π −

1

(4π)2

[ 7

3
C2(G) −

3

2
T (R)Nf

]
,

c2(t) =
1

8

1

(4π)2

[ 11

3
C2(G) +

11

3
T (R)Nf

]
, c3(t) =

1

4

{
1 +

ḡ(1/
√

8t)2

(4π)2
C2(R)

[ 3

2
+ ln(432)

]}
,

c4(t) =
1

8
d0ḡ(1/

√
8t)2, c′5(t) = −m̄(1/

√
8t)

{
1 +

ḡ(1/
√

8t)2

(4π)2
C2(R)

[
3 ln π +

7

2
+ ln(432)

]}

(b0 = 1
(4π)2

[
11
3 C2(G) − 4

3 T (R)Nf

]
and d0 = 1

(4π)2
6C2(R)).)
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Thermodynamic quantities in quenched QCD at finite
temperature

Asakawa–Hatsuda–Iritani–Itou–Kitazawa–H.S. (FlowQCD
Collaboration)

Thermodynamic quantities (trace anomaly, entropy density):

⟨ε− 3p⟩ = −⟨Tµµ⟩ , ⟨ε+ p⟩ = −⟨T00⟩+
1
3

∑
i=1,2,3

⟨Tii⟩ .

a = 0.013–0.061 fm≪
√

8t , number of configs. ∼ 1000–2000：

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
tT 2

1.05

1.10

1.15

1.20

1.25

1.30

1.35

∆
/T

4

T/Tc = 1. 68

continuum
Range-1
Range-2
Range-3
 643 × 12

 963 × 16

 1283 × 20

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
tT 2

4.8

4.9

5.0

5.1

5.2

5.3

5.4

s/
T

3

T/Tc = 1. 68

continuum
Range-1
Range-2
Range-3
 643 × 12

 963 × 16

 1283 × 20
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Thermodynamic quantities in quenched QCD at finite
temperature

Trace anomaly and the entropy density

0.5 1.0 1.5 2.0 2.5
T/Tc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

∆
/T

4

FlowQCD
Ref.[1]
Ref.[4]

0.5 1.0 1.5 2.0 2.5
T/Tc

0

1

2

3

4

5

6

7

s/
T

3

FlowQCD
Ref.[1]
Ref.[4]

Ref. [1]: Boyd et al. (1996), Ref. [4]: Borsanyi et al. (2012),
obtained by the integral method.

Works perfectly! No doubt on our reasoning.
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Thermodynamic quantities in the Nf = 2 + 1 QCD

Ejiri–Iwami–Kanaya–Kitazawa–H.S.–Taniguchi–Umeda–
Wakabayashi [WHOT-QCD
Collaboration]
a = 0.070 fm fixed, mπ/mρ ≃ 0.63, mηss/mϕ ≃ 0.74, Ns = 32,
number of configs. ∼ 100–1000.
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Thermodynamic quantities in the Nf = 2 + 1 QCD

a = 0.070 fm fixed, mπ/mρ ≃ 0.63, mηss/mϕ ≃ 0.74, Ns = 32,
number of configs. ∼ 100–1000.
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Figure: Black: T. Umeda et al.
[WHOT-QCD Collaboration] (2012)
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Summary

We derived a regularization-independent representation of EMT in
vector-like gauge theories through the gradient flow⇒ Applicable
to lattice gauge theory.

The 1 point function of EMT at finite temperature shows rather
promising results.
We are now carrying out the computation with physical quark
mass (K. Kanaya et al. [WHOT-QCD Collaboration],
arXiv:1710.10015). Fairly good results.
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Summary

Recently, study of the 2 point correlation function

⟨Tµν(x)Tρσ(y)⟩

has initiated (M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda,
arXiv:1708.01415; Y. Taniguchi et al. [WHOT-QCD Collaboration],
arXiv:1711.02262) to examine the conservation law, linear
response relations, the feasibility of the viscosity computation, etc.

The study of the hadronic matrix element

⟨hadron|Tµν(x) |hadron⟩

will also be interesting (ex. the spin structure).
Also for the gravitational physics?
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