

Gravitational effects in muon/neutron experiments

Workshop on Gravitational physics with particle accelerators 2017 2017/11/30

Kyushu University,

Research Center for Advanced Particle Physics

Tamaki Yoshioka

Test of inverse square law of gravity

2017/Nov/30

Test of Inverse Square Law of Gravity

- Gravity is extremely weak compared to the other forces
 - Can be naturally explained by assuming extra dimensions.
 - Deviation from inverse square law is expected if extra dimensions exist.
 - Model-independent search is performed by assuming Yukawa-type force with coupling constant α and Compton wavelength λ .

$$V = -G_N \frac{mM}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

Newtonian Yukawa
potential potential

Test of Inverse Square Law of Gravity

2017/Nov/30

ADD model

Physics Letters B 429 (1998) 263-272

The hierarchy problem and new dimensions at a millimeter

Nima Arkani-Hamed ^a, Savas Dimopoulos ^b, Gia Dvali ^c

^a SLAC, Stanford University, Stanford, CA 94309, USA
 ^b Physics Department, Stanford University, Stanford, CA 94305, USA
 ^c ICTP, Trieste 34100, Italy

- Gravity has only been accurately measured in ~1cm range.
- Assuming the gravity become same order of other forces at TeV scale. Λ =0.1mm for n=2.
- Should be continuous at $r = \Lambda$.

$$F = \begin{cases} G \frac{Mm}{r^2} & (r > \Lambda) \\ G_{4+n} \frac{Mm}{r^{2+n}} & (r < \Lambda) \end{cases}$$

2017/Nov/30

α - λ Exclusion plot

2017/Nov/30

α - λ Exclusion plot

2017/Nov/30

Workshop on Gravitational physics with particle accelerators 2017 9

α - λ Exclusion plot

Experimental Principle

• Differential cross section of Yukawa force is evaluated with Born approximation.

Workshop on Gravitational physics with particle accelerators 2017 11

 θ [rad]

Material and Life Science Facility

Material and Life Science Facility

Experimental Setup

Results

Journal paper is currently being prepared. Final results will be appeared rather soon.

2017/Nov/30

Workshop on Gravitational physics with particle accelerators 2017 19

Weak equivalence principle Antimatter gravity

2017/Nov/30

Gravitational Acceleration of Free Neutron

- How about elementary particle/lepton?

2017/Nov/30

Gravitational Acceleration of Electrons

Phys. Rev. Lett. 19 (1967)

Volume 19, Number 18	PHYSICAL REVIEW LETTERS	30 October 1967	DETECTOR	
EXPERIMENTAL COMPARISON OF THE GRAVITATIONAL FORCE ON FREELY FALLING ELECTRONS AND METALLIC ELECTRONS*			VACUUM	╨╵
F. C. Witteborn and W. M. Fairbank Physics Department, Stanford University, Stanford, California (Received 2 October 1967)			MOVABLE DRIFT TUBE	
A free-fall to electrons in a 0.09mg, where ports the conte magnitude and	echnique has been used to measure the net vertical component of vacuum enclosed by a copper tube. This force was shown to be m is the inertial mass of the electron and g is 980 cm/sec ² . The function that gravity induces an electric field outside a metal surf direction such that the gravitational force on electrons is canceled as the second sec	of force on less than This sup- ace, of elled.	GUIDE SOLENOID	
First direct test of gravitational acceleration of electron.			STATIONARY DRIFT TUBE	
Results are co	ontroversial and remain inconclu	isive.		

• Another type of experiment is desired.

CATHODE

MAGNET

.

.

Gravitational Acceleration of Muonium

- Other candidates : electron, muon, positronium ...
- Muonium (μ⁺e⁻ atom, denoted as Mu hereafter) is appropriate candidate because of it's large mass, long lifetime and electrical neutrality.
- Consideration for free drop experiment of Mu

t (ms)	$1/2gt^{2}$	t√2E/m
	Free drop (nm)	Thermal motion (cm)
25	2.5	$1 \times \sqrt{T}$
50	12	$2 \times \sqrt{T}$
75	30	$2.5 \times \sqrt{T}$

- Free drop experiment of Mu seems difficult in straightforward way.
- Completely new idea is necessary.
 → Interferometer

Introductory Muon Science, Kanetada Nagamine Cambridge University Press

Antimatter Gravity

- Antimatter gravity has never been directly measured.
- Result of indirect test:
 - $g/g 1 < 10^{-7}$, arXiv:0907.4110
- Direct limit of antihydrogen:
 - -65 < g/g < 110 , Nature Commun. 4 (2013) 1785 by ALPHA collaboration
- Again, Mu is suitable for testing antimatter gravity as of it's mass is dominated by μ^+ .
- Also, it will be a test for purely leptonic system/second generation.

Antimatter Gravity

- Application of Mach-Zehnder type interferometer originally developed for atom/neutron.
- Three equally spaced identical gratings; first two for producing interference pattern which is scanned by moving third one. The grating pitch is 100nm.
- The experiment is planned to perform at PSI. Precision is 0.03g in 100days by assuming 10⁵ Mu/sec.

2017/Nov/30

Workshop on Gravitatio arXiv:physics/0702143 [physics.atom-ph] *with particle acceleral* arXiv:1601.07222 [physics.ins-det]

Material and Life Science Facility

Material and Life Science Facility

MuSEUM (Mu-HFS, μ_{μ}/μ_{p}) DeeMe (mu-e conv.)

fracemuor

maina

<u>Result</u>

the world's first muon rf linear acceleration!

Summary

- Low energy neutron and muon/Mu are ideal probe to study gravity effect because of their large mass, long lifetime and electrical neutrality.
- J-PARC provide high intense neutron and muon beam.
 - Unique experimental environment.
 - BL05 for neutron fundamental physics.
 - H-Line for muon physics.
 - Pulsed feature may be utilized.
- Any theoretical input will be highly welcomed for design of future experiment.