Five-body calculation of heavy pentaquark system

Emiko Hiyama (Kyushu Univ./RIKEN)
J-M. Richard (Lyon)
A. Hosaka (RCNP/JAEA)
M. Oka (TIT/JAEA)
Quark model estimate of hidden-charm pentaquark resonances

Emiko Hiyama*
Department of Physics, Kyushu University, Fukuoka, Japan, 819-0395
Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 Japan and
Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

Atsushi Hosaka†
Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan and
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 Japan

Makoto Oka‡
Department of Physics, H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan and
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan

Jean-Marc Richard§
Université de Lyon, Institut de Physique Nucléaire de Lyon, IN2P3-CNRS–UCBL,
4 rue Enrico Fermi, 69622 Villeurbanne, France
(Dated: March 23, 2018)

Published in PRC last month
search for multi exotic quarks systems such as tetra quark systems, penta quark systems, and di-baryon systems have a long history.

Belle Group

\[X(3872): 3871.2 \pm 0.5 \text{ MeV} \]
\[1^{++} \]
\[\Gamma < 2.3 \text{ MeV} \]

After observation of \(X(3872) \), there are many observed exotic state candidates shown in red color. \(Z(4430) \) \(\pm \) have been observed, recently.

Black: Observed conventional \(cc \) states
Blue: Predicted conventional \(cc \) states
Red: Exotic state candidates with \(cc \) inside
Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Decays

R. Aaij et al.*
(LHCb Collaboration)
(Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark states, in $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb$^{-1}$ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29$ MeV and a width of $205 \pm 18 \pm 86$ MeV, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5$ MeV and a width of $39 \pm 5 \pm 19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

<table>
<thead>
<tr>
<th>State</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>Fit fraction (%)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_c(4380)^+$</td>
<td>4380±8±29</td>
<td>205±18±86</td>
<td>8.4±0.7±4.2</td>
<td>9σ</td>
</tr>
<tr>
<td>$P_c(4440)^+$</td>
<td>4449.8±1.7±2.5</td>
<td>39±5±19</td>
<td>4.1±0.5±1.1</td>
<td>12σ</td>
</tr>
</tbody>
</table>

- Best fit has $J^P=(3/2^-, 5/2^+)$, also $(3/2^+, 5/2^-)$ & $(5/2^+, 3/2^-)$ are preferred
To describe the data of \(\text{Pc}(4380)^{+} \) and \(\text{Pc}(4459)^{+} \) state, there are theoretical effort.

- **Cusp?**

- **Meson-Baryon state?**

- **Baryoncharmonnia**

- **Tightly bound pentaquark states**

Motivated by the experimental data of pentaquark system at LHCb, We calculate this system within the framework of non-relativistic constituent quark model.

To describe the experimental data, It is necessary to reproduce the observed threshold.

The Hamiltonian is important to reproduce the low-lying energy spectra of meson and baryon system.
Hamiltonian

\[H = \sum_i \left(m_i + \frac{p_i^2}{2m_i} \right) - T_G + V_{\text{Conf}} + V_{\text{CM}} \quad -\Lambda/r \quad \Lambda = 0.1653 \text{GeV}^2 \]

\[V_{\text{Conf}} = -\sum_i \sum_{j<i}^{8} \frac{\lambda_i^\alpha \lambda_j^\alpha}{2} \left[\frac{k}{2} (x_i - x_j) + v_0 \right], \]

\[V_{\text{CM}} = \sum_i \sum_{j<i}^{8} \frac{\xi}{2} \frac{\lambda_i^\alpha \lambda_j^\alpha}{m_i m_j} \frac{\xi_\sigma}{\sigma_i \cdot \sigma_j} e^{-(x_i - x_j)^2/\beta^2} \]

\[\xi_\alpha = (2\pi/3) k_p \quad \beta = A((2m_i m_j)/(m_i + m_j))^{(-B)} \]

\[K_p = 1.8609 \quad A = 1.6553 \quad B = 0.2204 \]

\[m_q = 315 \text{ MeV}, \quad m_c = 1836 \text{ MeV} \]

Calculated energy spectra for meson and baryon systems are in good agreement with the observed data.
In order to solve few-body problem accurately,

Gaussian Expansion Method (GEM), since 1987

- A variational method using Gaussian basis functions
- Take all the sets of Jacobi coordinates

Developed by Kyushu Univ. Group, Kamimura and his collaborators.

Review article:

High-precision calculations of various 3- and 4-body systems:

- Exotic atoms / molecules,
- 3- and 4-nucleon systems,
- multi-cluster structure of light nuclei,
- Light hypernuclei,
- 3-quark systems,
- 4He-atom tetramer
\[
\psi_{JM}(qqqqcc) = \Phi_{JM}^{(C=1)} + \Phi_{JM}^{(C=2)} + \phi_{JM}^{(C=3)} + \Phi_{JM}^{(C=4)}
\]

\[
\phi_{\alpha JM}(qqqqcc) = A_{qqqq} \{[\text{color}]^c_{\alpha} \cdot [\text{isospin}]^c_{\alpha} \cdot [\text{spin}]^c_{\alpha} \cdot [\text{spatial}]^c_{\alpha} \}_{JM}\}
Wavefunction of Color part

\[\psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4, \mathbf{r}_5) = 1 \otimes 1 \]

Similar for \(C=2 \)

\[C=2(\Lambda c+D, \Sigma c+D) \]
Confining channels

\[
\begin{align*}
3 & \times 3 = 8 + 1 \\
\text{I take color singlet.}
\end{align*}
\]
\[\Psi_{JM}(qqqcc) = \Phi_{JM}^{(C=1)} + \Phi_{JM}^{(C=2)} + \Phi_{JM}^{(C=3)} + \Phi_{JM}^{(C=4)} \]

\[\Phi_{\alpha JM}(qqqcc) = A_{qqqq} \{(color)_{\alpha}^{(c)} (isospin)_{\alpha}^{(c)} (spin)_{\alpha}^{(C)} (spatial)_{\alpha}^{(c)} \}_{JM} \} \]

\[(spatial)_{\alpha}^{(c)} = \phi_{n_l^{(c)}}(r_c) \psi_{\nu\lambda}^{(c)}(\rho_c) \phi_{k_l^{(c)}}(s_c) \Phi_{n_{LM}^{(c)}}(R_c) \]

\[\phi_{n_R L_{cM}}(\hat{R}) = R_{Lc} e^{-(\hat{R}/\hat{R}_{n_R})^2} Y_{LcM}(\hat{R}) \]

Same procedure is taken for \(r, \rho, \) and \(s. \)
For the Pc(4380) and (4450), we consider the following 9 candidates states,

Total orbital angular momentum: \(L=0, 1, 2 \)
Total Spin : \(S=1/2, 3/2, 5/2 \)

For example, in the case of total orbital angular momentum \(L=0, S=1/2, 3/2, 5/2 \), \(J^\pi=1/2^-, 3/2^-, 5/2^- \)
We take s-waves for all coordinates.
$$(H-E)\Psi=0$$

By the diagonalization of Hamiltonian, we obtain N eigenstates for each J^{π}.

Here, we use about 40,000 basis functions.
Then, we obtained 40,000 eigenfunction for each J^{π}.
First, we investigate $J=1/2^-$, namely, L (total angular momentum) = 0, S (total spin) = 1/2.

$L=0, S=1/2$ for example
First, we take two channels.
Confining channels

I take color singlet.

I take color singlet.
Next, we take two scattering channels.
Do these states correspond to resonance states or discrete non-resonance continuum states?
useful method: real scaling method
often used in atomic physics

In this method, we artificially scale the range parameters of our Gaussian basis functions by multiplying a factor α: $r_n \rightarrow \alpha r_n$ in $r! \exp^{(-r/r_n)^2}$ for example $0.8 < \alpha < 1.5$

and repeat the diagonalization of Hamiltonian for many value of α.

What is the result in our pentaquark calculation?
Resonance state lifetimes from stabilization graphs

Jack Simond

Chemistry Department, University of Utah, Salt Lake City, Utah 84112
(Received 20 January 1981; accepted 18 May 1981)

The stabilization method (SM) pioneered by Taylor and co-workers has proven to be a valuable tool for estimating the energies of long-lived metastable states of electron-atom, electron-molecule, and atom-diatom complexes. In implementing the SM one searches for eigenvalues arising from a matrix representation of the relevant Hamiltonian H which are “stable” as the basis set used to construct H is varied.

To obtain lifetimes of metastable states, one can choose from among a variety of techniques (e.g., phase shift analysis, Feshbach projection “golden rule” formulas, Sliegol methods, and complex coordinate scaling methods), many of which use the stabilized eigenvector as starting information. Here we demonstrate that one can obtain an estimate of the desired lifetime directly from the stabilization graph in a manner which makes a close connection with the complex coordinate rotation method (CRM) for which a satisfactory mathematical basis exists.

The starting point of our development is the observation that both the stable eigenvalue (E_s) and the eigenvalue(s) (E_m) which come from above and cross E_s (see Fig. 1 and Refs. 9–11 and 12) vary in a nearly linear manner with respect to α, near their avoided crossing points. This observation leads us to propose that the two eigenvalues arising in each such avoided crossing can be thought of as arising from two “uncoupled” states having energies $\epsilon_s(\alpha) = \epsilon + \delta_1 (\alpha - \alpha_c)$ and $\epsilon_m(\alpha) = \epsilon + \delta_2 (\alpha - \alpha_c)$, where δ_1 and δ_2 are the slopes of the linear parts of the stable and “continuum” eigenvalues, respectively. α_c is the value of α at which these two straight lines would intersect, and ϵ is their common value at $\alpha = \alpha_c$. This modeling of ϵ_s and ϵ_m is simply based upon the observa-
Example of real scaling

Not result of penta quark system

What is the result of our pentaquark calculation?
\[
\phi_{nR} L_c M (R) = R^L_c e^{-(R/\bar{R}_{nR})^2} Y_{L_c M} (\hat{R})
\]

\[R_{nR} \Rightarrow \alpha R_{nR}\]
Results before doing the scattering calculation

Bound-state approximation

- All states are melted into each meson-baryon continuum decaying state.
- Then, there is no resonant state between 4000 MeV to 4600 MeV.
One resonance at 4690 MeV

Much higher than the observed data

Why we have a resonance state at such higher energy?
This corresponds to resonant state, like a feshbach resonant state. It is considered that other states are melted into various threshold. For example, let us consider this state.
Conjecture: 4119 MeV can be describe as $\eta c+N$ like. However, due to the restriction of the configurations, namely, by only $C=4$ and 5 channels, the mass energy is up than the $\eta c+N$ by about 200 MeV. In order to investigate this conjecture, we solve scattering states including $\eta c+N$ channel only with real scaling method. If 4119 MeV is $\eta c+N$ like structure, this State should be melted into $\eta c+N$ threshold.
Melted into $\eta_c + N$ threshold 4119 MeV is $\eta_c + N$ like structure!

100 MeV difference

$J/\Psi + N(4040)$

$J/\Psi + N(4584)$

$N + J/\Psi (4584)$

$N + \eta_c^* (4544)$

$\Sigma c + D^*(4505)$

$\Sigma c + D^*(4587)$

$P_c(4450)$

$L=0, S=1/2$

$\eta_c + N(3900)$

$\eta_c + N$ like structure!
\(J/\Psi + N(4040) \)
\(\Lambda c + D \)
\((4171) \)
\(\Lambda c + D^* \)
\((4323) \)
\(\Sigma c + D \)
\((4353) \)
\(\Sigma c + D^* \)
\((4505) \)
\(N^+ \eta c \)
\(* (4544) \)
\(N^+ J/\Psi^* \)
\((4584) \)
\(\Lambda c^* + D^* \)
\((4587) \)
\(N + J/\Psi^* \)
\((4584) \)
\(N + \eta c^* \)
\((4544) \)
\(\text{MeV} \)
\(L=0, S=1/2 \)

\(J/\Psi + N \) channel

\(\eta c + N \) (3900)
$J^\pi = 1/2^-$

$L=0, S=1/2$

- $\Sigma c^* + D^* (4587)$
- $N + J/\Psi^* (4584)$
- $N + \eta c^* (4544)$
- $\Sigma c + D^* (4505)$

- $Pc (4450)$

- $\Lambda c + D (4353)$
- $\Lambda c + D^* (4323)$

- $J/\Psi + N$ like structure

- Melted into $J/\psi + N$

- $\Lambda c + D (4171)$

- $J/\Psi + N (4040)$

- $\eta c + N (3900)$
$J^\pi=1/2^-$

- No coupled with any threshold then, exist as a resonant state

- J/Ψ^*+N like
 - $\Sigma^c+D^*(4587)$
 - $N+J/\Psi^*(4584)$
 - $N+\eta_c^*(4544)$
 - $\Sigma^c+D^*(4505)$
 - $\Lambda^c+D,\Lambda^c+D^*$

- Mixture of $\eta_c+N,\Lambda^c+D^*,\Sigma^c+D$

- $P_c(4450)$

- $J/\Psi+N$ like structure
 - $\Sigma^c+D(4353)$
 - $\Lambda^c+D^*(4323)$

- $J/\Psi+N$ like structure
 - $\Lambda^c+D(4171)$

- η_c+N like structure
 - $J/\Psi+N(4040)$
 - $\eta_c+N(3900)$
Resonant state => it is highly energy region than the observed data.

$\Lambda_c + D^* , J/\psi + N, \Sigma_c + D^*$

$J/\psi + N$ structure
Summary

Motivated by the observed \(\text{Pc}(4380) \) and \(\text{Pc}(4450) \) systems at LHCb, we calculated energy spectra of \(\text{qqqcc}^- \) system using non-relativistic constituent quark model. To obtain resonant states, we also use real scaling method.

Currently, we find no sharp resonant states (penta-quark like) with \(L=0, S=1/2 \ (J^\pi=1/2^-) \) and \(L=0, S=3/2 \ (J^\pi=3/2^-) \) at observed energy region. However, we have one resonant state at 4690 MeV for \(J^\pi=1/2^- \) and at 4890 MeV for \(J^\pi=3/2^- \). This can be penta-quark state.

From our calculation, we would suggest that the resonant states observed at LHCb are meson-baryon resonant states which we cannot calculate in our model.
Thank you!