Constraint on higher order symmetry energy parameters and its relevance to neutron star properties

Akira Ohnishi
(Yukawa Inst. for Theor. Phys., Kyoto U.)

in collaboraton with
E. E. Kolomeitsev (Matej Bel U.), James M. Lattimer (Stony Brook),
Ingo Tews (LANL), Xuhao Wu (Nankai U./YITP)

Int. workshop on “Hadron structure and interaction in dense matter”
Nov. 11-12, 2018, Tokai, Japan

 [arXiv:1611.07133]
• AO, Kolomeitsev, Lattimer, Tews, X.Wu, in prog.
QCD Phase Diagram

RHIC, LHC, Early Universe
Lattice QCD

Heavy-Ion Collisions
(BES, FAIR, NICA, J-PARC)

QGP

CSC
\[\delta = \frac{(N-Z)}{A} \quad \text{(or } Y_Q \text{ (hadron)} = \frac{Q_h}{B} \sim \frac{1}{2} - \frac{1}{2} \delta) \]
Symmetry Energy Parameters & Neutron Star Radius

Nuclear Matter Symmetry Energy parameters \((S_0, L)\) are closely related to Neutron Star Properties, e.g. \(R_{1.4} = R_{NS}(M = 1.4M_\odot)\)

How can we constrain \((S_0, L)\)?
→ Nuclear Exp't. & Theory, Astro. Obs., Unitary gas

Conjecture: UG gives the lower bound of neutron matter energy.
Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

\[
S(n) = E_{PNM} - E_{SNM} \geq E_{UG} - E_{SNM}
\]

\[
E_{UG} = \xi E_{FG} \quad (\xi \approx 0.38)
\]

Sym. Nucl. Matter EOS is relatively well known.

→ For a given \(L\), lower bound of \(S_0\) exists
Constraint on \((S_0, L)\) from Lower Bound of PNM Energy

- Unitary gas + 2 \(M_\odot\) constraints rule out 5 EOSs out of 10 numerically tabulated and frequently used in astrophys. calc.
Further Constraints on Higher-Order Sym. E. parameters

- K_n and Q_n are correlated with L in “Good” theoretical models.

 \[
 K_n = 3.534L - (74.02 \pm 21.17)\text{MeV} \\
 Q_n = -7.313L + (354.03 \pm 133.16)\text{MeV}
 \]
Questions:
What are the effects of these higher-order symmetry energy parameters on the MR curve of NS?

This work:
TLOK + 2 M_\odot constraints + k_F expansion $\rightarrow R_{1.4}$

Contents
- Introduction
- Symmetry Energy Parameters, Nuclear Matter EOS, and Neutron Star Radius
- Implications to quark-hadron physics in cold dense matter
 - Neutron chemical potential, QCD phase transition
- Summary
Symmetry Energy Parameters, Nuclear Matter EOS, and Neutron Star Radius
Saturation & Symmetry Energy Parameters

\[E_{\text{NM}}(u, \alpha) = E_{\text{SNM}}(u) + \alpha^2 S(u) \]

\[E_{\text{SNM}}(u) \simeq E_0 + \frac{K_0}{18}(u-1)^2 + \frac{Q_0}{162}(u-1)^3 \]

\[S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_s}{18}(u-1)^2 + \frac{Q_s}{162}(u-1)^3 \]

\((u = n/n_0, \alpha = (n_n - n_p)/n)\)

Energy does not approach zero at \(n \to 0\).

Fermi momentum expansion (\(\sim\) Skyrme type EDF)

Generated many-body force is given by \(k_F \propto u^{1/3}\)

\[E_{\text{SNM}}(u) \simeq T_0 u^{2/3} + a_0 u + b_0 u^{4/3} + c_0 u^{5/3} + d_0 u^2 \]

\[S(u) \simeq T_s u^{2/3} + a_s u + b_s u^{4/3} + c_s u^{5/3} + d_s u^2 \]

Kin. E. Two-body Density-dep. pot.
Expansion Coefficients

Coefficients \((a,b,c,d)\) are represented by Saturation and Symmetry Energy Parameters

\[a_0 = -4T_0 + 20E_0 + K_0 - Q_0/6 \]
\[b_0 = 6T_0 - 45E_0 - 5K_0/2 + Q_0/2 \]
\[c_0 = -4T_0 + 36E_0 + 2K_0 - Q_0/2 \]
\[d_0 = T_0 - 10E_0 - K_0/2 + Q_0/6 \]

\[a_s = -4T_s + 20S_0 - 19L/3 + K_s - Q_s/6 \]
\[b_s = 6T_s - 45S_0 + 15L - 5K_s/2 + Q_s/2 \]
\[c_s = -4T_s + 36S_0 - 12L + 2K_s - Q_s/2 \]
\[d_s = T_s - 10S_0 + 10L/3 - K_s/2 + Q_s/6 \]

\[
\left(T_0 = \frac{3}{5} \frac{\hbar^2 k_F (n_0)^2}{2m}, \quad T_s = T_0 (2^{1/3} - 1) \right)
\]

Tedious but straightforward calc.
TLOK+2M\(\odot\) constraints

TLOK constraints

- \((S_0, L)\) is in Pentagon.
- \((K_n, Q_n)\) are from TLOK constraint.
- \(K_0=(190-270)\) MeV
- \((n_0, E_0)\) is fixed
 \(n_0=0.164\) fm\(^{-3}\), \(E_0=-15.9\) MeV (small uncertainties)
- \(Q_0\) is taken to kill \(d_0\) parameter
 (Coef. of \(u^2\). Sym. N. M. is not very stiff at high-density)

2 M\(\odot\) constraint

- EOS should support 2 M\(\odot\) neutron stars.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.
2M_\odot constraint narrows the range of EOS.

Consistent with FP and TT(Togashi-Takano) EOSs.

APR and GCR(Gandolfi-Carlson-Reddy) EOSs seems to have larger S_0 values.

OKLTW, in prog.
Neutron Star MR curve

TLOK + 2 M_{\odot} constraints $\rightarrow R_{1.4}=(10.6-12.2)$ km

- E and P are linear fn. of Sat. & Sym. E. parameters \rightarrow Min./Max. appears at the corners of pentagon (ABCDE).

- For a given (S_0, L),
 - unc. of $R_{1.4}$ \sim 0.5 km
 - = unc. from higher-order parameters

- Unc. from (S_0, L) \sim 1.1 km
 \rightarrow We still need to fix (S_0, L) more precisely.
Impact of GW from binary neutron star merger

GW170817 from NS-NS → Multi messenger astrophysics
(Kyutoku's talk)

Neutron Star Radius
- Inspiral region → Tidal deformability (Λ) → NS radius (e.g. $R_{1.4}$)

Neutron Star Maximum Mass
- No GW signal from Hyper Massive NS → M_{max}
 - $M_{\text{max}}(T=0,\omega=0) < M_{\text{max}}(T=0,\omega) < M < M_{\text{max}}(T,\omega)$

Nucleosynthesis site of r-process nuclei
- kilonova/macronova from decay energy of the synthesized elements
- r-process nucleosynthesis seems to occur in BNSM!

Central Engine of (Short) Gamma-Ray Bursts
- GW as standard siren (Hubble constant)

Courtesy of Y. Sekiguchi @ YKIS2018b
Various Constraints

Annala+, PRL120('18)172703

Abbott+, 1805.11579

I. Tews, J. Margueron, S. Reddy, PRC98 ('18)045804

Lattimer, Prakash PRep.621('16),127
Neutron Star MR curve

Our constraint is consistent with many of previous ones.

\[R_{1.4} = (10.6-12.2) \text{ km} \]

Present work (TLOK + 2 \(M_{\odot} \)) \(\text{OKLTW, in prog.} \)

LIGO-Virgo (Tidal deformability \(\Lambda \) from BNSM)

(10.5-13.3) km \(\text{Abbott+('18b)} \)
(9.1-14.0) km \(\text{De+'18 (A)} \)

Theoretical Estimates

(10.7-13.1) km

\(\text{Lattimer, Prakash('16)} \)

(10.0-13.6) km

\(\text{Annala+'18 (\(\chi \text{EFT}+p\text{QCD}) \)} \)

(10-13.6) km

\(\text{Tews+'18(\(\chi \text{EFT}+c_s \))} \)

(12.0-13.6) km

\(\text{Fattoyev+'18 (PREX)} \)

12.7 ± 0.4 km

\(\text{Margueron+'18 (n expansion)} \)
Implications to quark-hadron physics in cold dense matter (1)
Neutron Chemical Potential and Hyperon Puzzle
Neutron Chemical Potential in NS

- Λ appears in neutron stars if $E_\Lambda (p=0) = M_\Lambda + U_\Lambda < \mu_n$

- W. Weise's conjecture: U_Λ in χEFT (2+3 body) is stiff enough.

- But μ_n is larger with TLOK+2M_\odot constraints

W. Weise, NFQCD2018 (2018.06); Gerstung, Kaiser, Weise, in prog.

APR μ_n

OKLTW, in prog.
Neutron Chemical Potential

\[\mu_n + M_N = \frac{\partial (nE)}{\partial n_n} = E + u \frac{\partial E}{\partial u} + 2\alpha(1 - \alpha)S(u) \]

Single particle potential

\[U_\Lambda(u) = \frac{\partial (nV)}{\partial n_\Lambda} \]

\[\simeq U_{0\Lambda} + \frac{L_\Lambda}{3}(u - 1) \]

\[U_{0\Lambda} \simeq -30 \text{ MeV} \]

\[L_\Lambda = ??? \]

(L_\Lambda < 0 in most of RMF before 2010)

Sym. E. and \(L_\Lambda \) determine the onset density of \(\Lambda \).

(Already mentioned in Millener, Dover, Gal paper)
Implications to quark-hadron physics in cold dense matter (2)

QCD phase transition density and order in cold dense matter
QCD phase transition in cold dense matter

Transition to quark matter in cold-dense matter
1st order or crossover?

Crossover: Masuda, Hatsuda, Takatsuka, Kojo, Baym, ...

1st order p.t.

Many effective models predict, e.g. Asakawa-Yazaki CP

Recent phenomenological support: Negative Directed Flow in HIC
Y. Nara, H. Niemi, AO, H. Stoecker, PRC94('16)034906.
Y. Nara, H. Niemi, AO, J. Steinheimer, X.-F. Luo, H. Stoecker, EPJA 54 ('18)18

The phase transition density may be above NS central density
Directed Flow \(v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle, \quad \text{Slope} = d v_1 / dy \)

Negative Directed Flow

- **Directed Flow** slope at \(\sqrt{s_{NN}} = 11.5 \text{ GeV} \) (STAR ('14))
- Strong softening of EOS is necessary at \(n > (5-10) n_0 \)

\[Y. Nara, H. Niemi, AO, H. Stoecker, \\ PRC94('16)034906. \]

\[Y. Nara, H. Niemi, AO, J. Steinheimer, \\ X.-F. Luo, H. Stoecker \\ EPJA 54 ('18)18 \]
Isospin & Hypercharge Sym. E in quark matter

- Two types of vector int. in NJL

 \[\mathcal{L}_v = -G_0 (\bar{q} \gamma_\mu q)^2 - G_v \sum_i \left[(\bar{q} \gamma_\mu \lambda_i q)^2 + (\bar{q} i \gamma_5 \gamma_\mu \lambda_i q)^2 \right] \]

- Isospin & Hypercharge Sym. E
 \[E = \alpha^2 S(n) + \alpha_Y^2 S_Y(n) \, , \, \alpha = -2 \langle T_z \rangle / B \, , \, \alpha_Y = \langle B + S \rangle / B \]
(ρ, T, Y_e) during SN, BH formation, BNSM

See also Oertel+16

AO, Ueda, Nakano, Ruggieri, Sumiyoshi, PLB704('11), 284
Reservations and Prospects
Reservations

- Only massless electrons are considered and Crust EOS is ignored.
 - With μ, chemical potential may be reduced a little.
- Non-relativistic kinetic energy is used.
 - With rel. K.E., E per nucleon is modified by 0.03 MeV @ $10 \ n_0$ as long as Sat. and Sym. E parameters are fixed.
- Function form is limited to k_F expansion with $u^{k/3} \ (k=2-6)$.
 - $R_{1.4}$ range becomes narrower with $k=2-5$.
 - Density expansion gives EOSs very sensitive to parameters.
- Smooth $E(u)$ (= No phase transition) is assumed.
 - We expect QCD phase transition at $(5-10) \ n_0$ from recent BES data of directed flow *Nara, Niemi, AO, Stoecker ('16)*
 - Transition to quark matter may not soften EOS drastically.
- Causality is violated at high densities, $n > (4-6) \ n_0$.
To Do (or Prospect)

- Baryons other than nucleons Λ, Δ, Ξ, Σ, ...
- Connecting to Hadron Resonance Gas (HRG) EOS
 - HRG EOS
 - mass and kinetic E of hadrons with M<2 GeV + simple potential E
 \[\varepsilon_{HRG} = \mathcal{T} + cn^2 \]
 - or Lattice EOS in HIC (No saturation, No constraint from NS).
 - We need to guess the potential energy density more seriously for consistent understanding of HIC, Nuclear, and NS physics.
 \[\varepsilon = \mathcal{T} + V \]
 Nuclear and NS physics
- Connecting to Quark(-Gluon) matter EOS
 - Embed model-H singularities E.g. Nonaka, Asakawa ('04)
 - “Interpolation” of nuclear and quark matter EOS
Summary

- Tews-Lattimer-AO-Kolomeitsev ('17) constraints (S0, L, K_n, Q_n) and 2 M_☉ constraint with the aid of Fermi momentum (k_F) expansion lead to the constraint on 1.4 M_☉ neutron star radius of (10.6-12.2) km.
 - Consistent with many of other constraint.

- Onset density of hyperons may be sensitive to the symmetry energy in addition to potential parameters, (U_{0B}, L_{B}).
 - We need to know the slope of potential in addition to the depth.

- Global EOS (HIC and Nuclear/NS matter) needs to be given in a way where HIC physicists and NS physicists admit. E.g. “Hadron Resonance Gas (HRG)+Potential from NS”

Thank you for your attention.
Further Constraint on Q_n

- $2 \, M_\odot$ requirement constrains Q_n further.

$$Q_n > -9.3L + 480 \text{ MeV}$$

FIG. 4. Constraint on Q_n

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.
Neutron star – Is it made of neutrons?

- Possibilities of various constituents in neutron star core
 - Strange Hadrons
 - $d^* u^* d u^* s$
 - proton
 - Λ hyperon
 - Meson condensate (K, π)
 - $\bar{d} u \bar{u} d^* s$
 - π
 - anti kaon
 - Quark matter
 - Quark pair condensate (Color superconductor)
 - $d d^* u$
 - 2SC

$NS \text{ core} = \text{Densest stable matter existing in our universe.}$

$R \sim 10 \text{ km}$

$M \sim 1.4 \, M_\odot, \quad \rho_c \sim (3-10) \, \rho_0$
(ρ, T) during SN & BH formation

Ishizuka, AO, Tsubakihihara, Sumiyoshi, Yamada, JPG 35('08) 085201; AO et al., NPA 835('10) 374.

Shen EOS + hyperons
QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars.
Unitary Gas Constraint

Tews, Lattimer, AO, Kolomeitsev (TLOK), ApJ ('17)

Conjecture:
Unitary gas gives the lower bound of neutron matter energy.

\[
S(n) = E_{\text{PNM}} - E_{\text{SNM}} \geq E_{\text{UG}} - E_{\text{SNM}}
\]

\[
E_{\text{UG}} = \xi E_{\text{FG}} \quad (\xi \simeq 0.38)
\]

- \(a_0 = \infty\) in unitary gas
 → lower bound energy of \(a_0 < 0\) systems (w/o two-body b.s.)?
- Supported by (most of) ab initio calc.

Sym. Nucl. Matter EOS is relatively well known.
Potential Energy Density

Potential Energy Density in the Fermi momentum expansion

\[\mathcal{V} = nV = \sum_{i,j \in B} n_i n_j v_{ij}(n) \]

Density-dependent NN interactions \(v_{ij} \) (i, j=p or n) are known.

Single particle potential

\[U_i = \frac{\partial \mathcal{V}}{n_i} = \sum_j n_j v_{ij}(n) + \sum_{jk} n_j n_k \frac{\partial v_{jk}(n)}{\partial n_i} \]

\[= U_{0i} + \frac{L_i}{3} (u - 1) + \mathcal{O}((u - 1)^2) \]

\[\simeq au + bu^{4/3} \]

Again, a and b are given as a linear function of \(U_{0i} \) and \(L_i \).