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Introduction

Structure of hadron excited states

Various excitations of baryons
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What are 3q state, 5q state, MB state, ...?

- Comparison of data (spectrum, width,...) with quark models
- Analysis of scattering data by dynamical models

Clear (model-independent) definition of the structure?



Introduction

Difficulty 1 : definition and model space
Number of quarks + antiquarks (£ quark number) ?

A(1405) = Q9 + S +.

This may not be a good classification scheme.

Number of hadrons

| A(1405) ) = O + Cg) +...

Hadrons are asymptotic states.
--> different kinematical structure -

C. Hanhart, Eur. Phys. J. A 35, 271 (2008) B » fr r } (Pol. in ;’ : ;I 0

--> compositeness in terms of hadronic degrees of freedom



Introduction

Difficulty 2 : resonances

Excited states : finite width — : ;;: ;‘ v - i “

(unstable against strong decay) = =

LT R

- stable (ground) states

- unstable states

Mostly resonances! SEIETEE /|

Sanhda

PDG12

“Wave function” of resonance?
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--> First consider stable states, then extend it to resonances.
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Field renormalization constant /

Compositeness of the deuteron

/: probability of finding deuteron in a bare elementary state
S. Weinberg, Phys. Rev. 137, B672 (1965)

/deuteron) = ¢ NN model space
~ elementary particle
1

Model-independent relation for a shallow bound state

S [2(21_—22)] B+ 0m=Y), [rl= [%} R+ O(m;Y)

as ~ 5.41 [fm] : scattering length
re ~ 1.75 [fm] : effective range
R ~ (2uB)12 ~ 4.31 [fm] : deuteron radius (binding energy)

--> / = 0.2 : Deuteron is almost composite!



Field renormalization constant /

Compositeness in quantum mechanics
Hamiltonian of a single channel scattering system

H=|HolHV

Complete set for free Hamiltonian: bare |Bo > + continuum

1=«%MBM+/QMkMk

Physical bound state |B> with binding energy B
free full

(Ho+ V)| B) = —B| B)

>
>
Z : overlap of B and B 2
Z=|{Bo| B)F °
o<z <1 e
T
For small B, Z is related to observables Bo v R

- [82]n e[



Application to near-threshold resonances

Application to resonances

Features of the Weinberg’s argument:

- Model-independent approach (no potential, wave-fn, ... )
- Relation with experimental observables
- Only for bound states with small binding

Application to resonances by analytic continuation

_ [ laVIBE  , dGwW)
T / 5 g) + B] S

T.Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)
F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z can be complex. Interpretation?
- |Z| can be larger than unity. Normalization?

What about near-threshold resonances (~ small binding) ? :



Application to near-threshold resonances

Effective range expansion
S-wave scattering amplitude at low momentum

f(k) : @— ki +k2) !

B kcotd — ki -

Truncation is valid only at small k.

Scattering length a

- strength of the interaction
- cross section at zero momentum : 4m1a?

Effective range re
- typical length scale of the interaction
- can be negative

D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)



Application to near-threshold resonances

Poles of the amplitude

The amplitude has two poles
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(a,rc) are real for resonances



Application to near-threshold resonances

Field renormalization constant
Eliminate R from the Weinberg’s relations

7 1 ! 1 _ 2kT
B 14+a/(2r.) k= —kt

/ (residue) is determined by the pole position
<-- Amplitude is given by two parameters.
1-Z is pure imaginary and 0<|1-Z|<1
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Application to near-threshold resonances

Validity of the effective range expansion
A model calculation

- solid lines: pole position in a scattering model
- dashed lines: position deduced from (a,re¢)
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If the effective range is large, the expansion works well.
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Application to near-threshold resonances

Example: A:(2595)

Pole position of A:(2595) with 2. threshold in PDG

E [MeV]

[ [MeV]

a [fm]

re [fm]

0.67

2.59

10.5

9.5

- Isospin symmetry is assumed.
- i\ channel is not taken into account.

|1-Z| ~ 0.6 Interpretation ?

Larger effective range than typical hadronic scale
Chiral interaction gives ro ~ -4.6 fm

--> \(2595) is not likely a m2:; molecule
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Summary

Near-threshold s-wave resonances

< Effective range expansion :
pole position <--> observables (a, rc)

&< Compositeness 1-Z :
pure imaginary and normalized

< Application to A;(2595)

Large re --> not likely a molecule

T. Hyodo, arXiv:1305.1999 [hep-ph]
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