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Zb(10610) and Zb(10650)
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Decay process
✓Υ(5S) → Zbπ → Υ(nS) ππ
✓Υ(5S) → Zbπ → hb(mP)ππ
✓Υ(5S) → Zbπ → B*B(*)   ππ
✴ n=1,2,3  m=1,2

Mass and width
✓Zb(10610) : Zb
    M = 10607.4 ± 2.0 MeV  ~BB*
    Γ = 18.3 ± 2.4 MeV
✓Zb(10650) : Zb’
    M = 10652.2 ± 1.5 MeV  ~B*B*
    Γ = 11.5 ± 2.2 MeV

e-e+

b b

Υ(5S)

π π Υ(nS)
hb(mP)

Belle group,  PRL108, 112001 (2012).



Properties of Zb
Exotic quantum numbers

Exotic twin resonances

Exotic decays

Zb is a candidate of B*B(*) molecule !

✓IG(JP)=1+(1+)
✓Zb is the “genuine” exotic state

✓The masses of Zb’s are very close to the  
respective thresholds of BB* and B*B*

✓The decay of Υ(5S) ➜ Zbπ ➜ hb(mP)ππ is           
not suppressed although it needs spin flip



Branching fractions of Zb(’)

Belle results in quarkonium Roman Mizuk

Table 1: Branching fractions (B) of Zb(10610) and Zb(10650) assuming that the observed so far channels
saturate their decays.

Channel B of Zb(10610), % B of Zb(10650), %
ϒ(1S)π+ 0.32±0.09 0.24±0.07
ϒ(2S)π+ 4.38±1.21 2.40±0.63
ϒ(3S)π+ 2.15±0.56 1.64±0.40
hb(1P)π+ 2.81±1.10 7.43±2.70
hb(2P)π+ 2.15±0.56 14.8±6.22
B+  B∗0 +  B0B∗+ 86.0±3.6 –
B∗+  B∗0 – 73.4±7.0

3. Evidence for neutral isotriplet member Zb(10610)0

Both Zb(10610) and Zb(10650) are isotriplets with only charged components observed orig-
inally. Belle searched for their neutral components using the ϒ(5S) → ϒ(nS)π0π0 (n = 1,2)
decays [8]. These decays are observed for the first time and the measured branching fractions
B[ϒ(5S) → ϒ(1S)π0π0] = (2.25 ± 0.11 ± 0.22)× 10−3 and B[ϒ(5S) → ϒ(2S)π0π0] = (3.66 ±

0.22±0.48)×10−3, are in agreement with isospin relations.
Belle performed the Dalitz plot analyses of the ϒ(5S) → ϒ(1S,2S)π0π0 transitions using the

same model as for the charged pion channels (see Fig. 4). The Zb(10610)0 signal is found in
the ϒ(2S)π0 channel with the significance of 4.9σ including systematics. The Zb(10610)0 mass
of (10609+8

−6 ± 6)MeV/c2 is consistent with the charged Zb(10610)± mass. The signal of the
Zb(10610)0 in the ϒ(1S)π0 channel and the Zb(10650)0 signal are insignificant. The Belle data do
not contradict the existence of the Zb(10610)0 → ϒ(1S)π0 and the Zb(10650)0, but the available
statistics are insufficient to establish these signals.

4. Interpretations

As discussed at the end of Section 2, the assumption of molecular B(∗)  B∗ structure naturally
explains all observed so far properties of the Zb states. Their dynamical model, however, is an open
question. Proposed interpretations include presence of the compact tetraquark [9], non-resonant
rescattering [10], multiple rescatterings that result in the amplitude pole known as coupled channel
resonance [11] and deutron-like molecule bound by meson exchanges [12]. All these mechanisms
(except for the tetraquark) are intimately related and correspond rather to quantitative than to qual-
itative differences. Further experimental and theoretical studies are needed to clarify the nature of
the Zb states.

As discussed in Ref. [5], based on heavy quark symmetry one can expect more states with
similar nature but with differing quantum numbers. Such states should be accessible in radiative
and hadronic transitions in data samples with high statistics at and above the ϒ(5S), that will be
available at the SuperKEKB.
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✓Open flavor channels are dominant
✓hbπ decays are not suppressed
✓The decay ratios seems not to be reflected on 
the difference of phase space



Relations of spin structures and 
decay properties of Zb

S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, 
Phys.Rev. D86, 117502 (2012).



Light spin complex
✓In the heavy quark limit, new conserved 
quantity appear ̶̶ light spin complex

Sl = J - SH Total angular momentum 
Heavy quark spin

Light spin complex
J
SH

Sl

:
:
:

✓We can write the wave function of heavy 
hadrons as the direct product of SH ⊗ Sl

Υ
hb
χbJ

:
:
:

1H ⊗ 0l　
0H ⊗ 1l　
(1H ⊗ 1l)J　

:
:
:

SH ⊗ Sl bb(2S+1LJ)
bb(3S1)
bb(1P1)
bb(3PJ)

:
:
:

JPC

1- - 

1+- 

1++ 



Spin structure of meson pairs
✓The spin structure of heavy meson pairs is 
derived with spin recoupling formula.

Zb(10610) :
1√
2
(BB̄∗ − B∗B̄)(3S1) (65)

Zb(10650) : B∗B̄∗(3S1) (66)

W++
b0 :

1

2
(0−H ⊗ 0−l ) +

√
3

2
(1−H ⊗ 1−l )|J=0 (67)

W ′++
b0 :

√
3

2
(0−H ⊗ 0−l ) − 1

2
(1−H ⊗ 1−l )|J=0 (68)

W++
b1 : (1−H ⊗ 1−l )|j=1W

++
b2 (69)

Γ(Z0
b → χb0(1P )γ) : Γ(Z0

b → χb1(1P )γ) : Γ(Z0
b → χb2(1P )γ)

1 : 2.6 : 4.1
(70)

Γ(Z0
b → χb0(2P )γ) : Γ(Z0

b → χb1(2P )γ) : Γ(Z0
b → χb2(2P )γ)

1 : 2.5 : 3.8
(71)

ω0 ≈ 370, ω1 ≈ 350, ω2 ≈ 335 (72)

B∗B̄∗(3S1) :
[
[bq̄]1, [b̄q]1

]1
(73)

=
∑

H,l

1̂1̂Ĥl̂






1/2 1/2 1
1/2 1/2 1
H l 1





[
[bb̄]H , [q̄q]l

]1
(74)

=
1√
2
(0−H ⊗ 1−l ) +

1√
2
(1−H ⊗ 0−l ) (75)
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✓Now consider the heavy meson pairs for 
JPC=1--

at vertices of hPP, hPP!, and hP!P! (h ¼ !, ", and !).
Here, ~q and mh are momentum and mass of the exchanged
meson, and ! is the cutoff parameter. Then, Cðr;mhÞ and
Tðr;mhÞ are defined as

Cðr;mhÞ ¼
Z d3 ~q

ð2!Þ3
m2

h

~q2 þm2
h

ei ~q&~rFð ~q;mhÞ; (27)

Tðr;mhÞS12ðr̂Þ¼
Z d3 ~q

ð2!Þ3
' ~q2

~q2þm2
h

S12ðq̂Þei ~q& ~rFð ~q;mhÞ; (28)

with S12ðx̂Þ ¼ 3ð ~#1 & x̂Þð ~#2 & x̂Þ ' ~#1 & ~#2, and Fð ~q;mhÞ ¼
ð!2 'm2

hÞ2=ð!2 þ ~q2Þ2. The cutoff ! is determined from

the size of Bð!Þ based on the quark model as discussed in
Refs. [54,55]. There, the cutoff parameter is! ¼ 1070 MeV
when the ! exchange potential is employed, while ! ¼
1091 MeV when the !"! potential is employed.

As a brief summary, we emphasize again that, according
to the heavy quark symmetry, not only the B "B! ! B! "B and
B! "B! ! B! "B! transitions but also the B "B ! B! "B! and
B "B! ! B! "B! transitions become important as channel
couplings. In the next section, we will see that the latter
two transitions supply the strong tensor force, through the
channel mixing B and B! as well as different angular
momentum, such as L and L( 2.

III. CLASSIFICATION OF THE Bð!Þ !Bð!Þ STATES

We classify all the possible quantum numbers IGðJPCÞ
with isospin I, G parity, total angular momentum J, parity
P, and charge conjugation C for the states which can be
composed by a pair of Bð!Þ and "Bð!Þ mesons. The charge
conjugation C is defined for I ¼ 0 or Iz ¼ 0 components
for I ¼ 1, and is related to the G parity byG ¼ ð'1ÞIC. In

the present discussion, we restrict upper limit of the total
angular momentum as J ) 2, because too higher angular
momentum will be disfavored to form bound or resonant

states. The Bð!Þ "Bð!Þ components in the wave functions for
various JPC are listed in Table I. We use the notation
2Sþ1LJ to denote the total spin S and relative angular

momentum L of the two-body states of Bð!Þ and "Bð!Þ

mesons. We note that there are not only B "B and B! "B!

components but also B "B! ( "BB! components. The JPC ¼
0þ' state cannot be generated by a combination of Bð!Þ and
"Bð!Þ mesons [56]. For I ¼ 0, there are many Bð!Þ "Bð!Þ states
whose quantum number JPC are the same as those of the
quarkonia as shown in the third row of I ¼ 0. In the present
study, however, we do not consider these states, because we
have not yet included mixing terms between the quarkonia

and the Bð!Þ "Bð!Þ states. This problem will be left as future
works. Therefore, for I ¼ 0, we consider only the exotic
quantum numbers JPC ¼ 0'', 1'þ, and 2þ'. The states of
I ¼ 1 are clearly not accessible by quarkonia. We inves-
tigate all possible JPC states listed in Table I.
From Eqs. (13)–(16) and (21)–(26), we obtain the

potentials with channel couplings for each quantum
number IGðJPCÞ. For each state, the Hamiltonian is given
as a sum of the kinetic energy and the potential with
channel couplings in a form of a matrix. Breaking of the
heavy quark symmetry is taken into account by mass
difference between B and B! mesons in the kinetic term.
The explicit forms of the Hamiltonian for each IGðJPCÞ are
presented in Appendix A. For example, the JPC ¼ 1þ'

state has four components, 1ffiffi
2

p ðB "B! ' B! "BÞð3S1Þ, 1ffiffi
2

p *
ðB "B! ' B! "BÞð3D1Þ, B! "B!ð3S1Þ, B! "B!ð3D1Þ and hence it
gives a potential in the form of 4* 4 matrix as Eqs. (A6),
(A17), and (A28).

TABLE I. Various components of the Bð!Þ "Bð!Þ states for several JPC (J ) 2). The exotic quantum numbers which cannot be assigned
to bottomonia b"b are indicated by

p
. The 0þ' state cannot be neither bottomonium nor Bð!Þ "Bð!Þ states.

JPC Components Exoticness
I ¼ 0 I ¼ 1

0þ' & & & p p

0þþ B "Bð1S0Þ, B! "B!ð1S0Þ, B! "B!ð5D0Þ $b0
p

0'' 1ffiffi
2

p ðB "B! þ B! "BÞð3P0Þ
p p

0'þ 1ffiffi
2

p ðB "B! ' B! "BÞð3P0Þ, B! "B!ð3P0Þ %b
p

1þ' 1ffiffi
2

p ðB "B! ' B! "BÞð3S1Þ, 1ffiffi
2

p ðB "B! ' B! "BÞð3D1Þ, B! "B!ð3S1Þ, B! "B!ð3D1Þ hb
p

1þþ 1ffiffi
2

p ðB "B! þ B! "BÞð3S1Þ, 1ffiffi
2

p ðB "B! þ B! "BÞð3D1Þ, B! "B!ð5D1Þ $b1
p

1'' B "Bð1P1Þ, 1ffiffi
2

p ðB "B! þ B! "BÞð3P1Þ, B! "B!ð1P1Þ, B! "B!ð5P1Þ, B! "B!ð5F1Þ #
p

1'þ 1ffiffi
2

p ðB "B! ' B! "BÞð3P1Þ, B! "B!ð3P1Þ
p p

2þ' 1ffiffi
2

p ðB "B! ' B! "BÞð3D2Þ, B! "B!ð3D2Þ
p p

2þþ B "Bð1D2Þ, 1ffiffi
2

p ðB "B! þ B! "BÞð3D2Þ, B! "B!ð1D2Þ, B! "B!ð5S2Þ, B! "B!ð5D2Þ, B! "B!ð5G2Þ $b2
p

2'þ 1ffiffi
2

p ðB "B! ' B! "BÞð3P2Þ, 1ffiffi
2

p ðB "B! ' B! "BÞð3F2Þ, B! "B!ð3P2Þ, B! "B!ð3F2Þ %b2
p

2'' 1ffiffi
2

p ðB "B! þ B! "BÞð3P2Þ, 1ffiffi
2

p ðB "B! þ B! "BÞð3F2Þ, B! "B!ð5P2Þ, B! "B!ð5F2Þ c b2
p
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p ðB "B! ' B! "BÞð3D2Þ, B! "B!ð3D2Þ
p p
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p ðB "B! þ B! "BÞð3D2Þ, B! "B!ð1D2Þ, B! "B!ð5S2Þ, B! "B!ð5D2Þ, B! "B!ð5G2Þ $b2
p

2'þ 1ffiffi
2

p ðB "B! ' B! "BÞð3P2Þ, 1ffiffi
2

p ðB "B! ' B! "BÞð3F2Þ, B! "B!ð3P2Þ, B! "B!ð3F2Þ %b2
p

2'' 1ffiffi
2

p ðB "B! þ B! "BÞð3P2Þ, 1ffiffi
2

p ðB "B! þ B! "BÞð3F2Þ, B! "B!ð5P2Þ, B! "B!ð5F2Þ c b2
p
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Spin structure of meson pairs

with JP ¼ 0þ made of B !B and B# !B# also contain mixtures
of ortho- and para- heavy quark pairs.

In this paper a similar analysis in terms of the spin of the
heavy quark pair and the angular momentum of the ‘‘rest’’
degrees of freedom is applied to the states of heavy meson
pairs with isospin zero and JPC ¼ 1$$. This channel is of a
special interest due to the direct formation of such states in
eþe$ annihilation. Clearly, these quantum numbers corre-
spond to a P-wave relative motion of the mesons.1 It is
necessary to emphasize that unlike the isovector states,
considered [7–9] in connection with the Zb resonances,
and which are in fact states of a heavy meson pair, the
isoscalar JPC ¼ 1$$ states of heavy meson pairs should be
considered as an admixture to the pure heavy quarkonium
states, of which the ones produced in eþe$ annihilation are
3S1 states of the heavy quark pair. In the considered here
classification in terms of their SH % SSLB structure, the
quarkonium 3S1 states are 1$H % 0þSLB, since the (absent)
‘‘rest’’ degrees of freedom are in the vacuum state corre-
sponding to 0þSLB. A possible small admixture of 3D1 heavy
quark pair, which is to be classified as that of a 1$H % 2þSLB
arises in the second order in the breaking of the heavy
quark symmetry and is neglected here.

In what follows, for definiteness and simplicity of the
notation, the properties of the bottomoniumlike states and
of Bð#Þ meson-antimeson pairs are discussed. An applica-
tion to similar properties of charmonium and Dð#Þ mesons
will be mentioned separately.

The rest of the paper is organized as follows. In Sec. II
the transformation from the states of meson pairs to the
eigenstates of the heavy quark spin is derived. In Sec. III an
application of the spin symmetry to production of heavy
meson pairs in eþe$ annihilation is discussed, and in
Sec. IV properties of specific bottomoniumlike and char-
moniumlike vector resonances are considered. Finally, the
discussion and results are summarized in Sec. V.

II. SPIN STRUCTURE OF THE JPC ¼ 1$$ HEAVY
MESON PAIRS

There are four different P-wave states of the heavy
mesons with JPC ¼ 1$$:

B !B: piðByBÞ; B# !B$ !B#Bffiffiffi
2

p :
i

2
!ijkpjðB#y

k B$ B#
kB

yÞ;

ðB# !B#ÞS¼0:
piffiffiffi
3

p ðB#y
j B#

j Þ;

ðB# !B#ÞS¼2:

ffiffiffi
3

5

s
pk

2
ðB#y

i B#
k þ B#y

k B#
i $

2

3
"ikB

#y
j B#

j Þ: (2)

The states ðB# !B#ÞS¼0 and ðB# !B#ÞS¼2 correspond to two
possible values of the total spin S of the B# !B# meson

pair. The wave functions in the right-hand side are written
in terms of the c.m. momentum ~p and the wave functions
of the pseudoscalar and vector mesons and have the same
normalization for each state.
The four states of the meson pairs in Eq. (2) are not

eigenstates of either the operator of the total spin ~SH of the

heavy quark pair, nor of the operator ~JSLB ¼ ~SSLB þ ~L,
describing the angular momentum in the limit of spinless b
quark. Clearly, there are four possible combinations of
such eigenstates that match the overall quantum numbers
JPC ¼ 1$$:

c 10 ¼ 1$$
H % 0þþ

SLB; c 11 ¼ 1$$
H % 1þþ

SLB;

c 12 ¼ 1$$
H % 2þþ

SLB; and c 01 ¼ 0$þ
H % 1þ$

SLB:
(3)

The first three of these combinations involve an ortho- state
of the b !b pair with different alignment of the total spin
SH ¼ 1 relative to the total angular momentum of the state,
while the fourth combination involves a para- b !b state, i.e.,
with SH ¼ 0, while the overall angular momentum is
provided by that of the ‘‘rest’’ degrees of freedom, JSLB ¼
1 (and a negative C parity, which in simple terms of ‘‘the
light quark pair’’ q !q corresponds to a 1P1 state).
The explicit expansion of the four states in Eq. (2) in

terms of the four eigenfunctions c ab can be readily found,
similarly to the method used in Ref. [7] by replacing in
Eq. (2) the wave functions of the Bð#Þ mesons with inter-
polating expressions in terms of nonrelativistic spinors b
(by) for the b (anti) quark and the nonrelativistic spinors q
and qy for the ‘‘rest’’ degrees of freedom in the mesons,
B( ðbyqÞ, B#

i ( ðby#iqÞ, and performing the Fierz trans-
formation, e.g.,

ðbyqÞðqybÞ ¼ $ 1

2
ðby#ibÞðqy#iqÞ $

1

2
ðbybÞðqyqÞ:

The result has the form

B !B:
1

2
ffiffiffi
3

p c 10 þ
1

2
c 11 þ

ffiffiffi
5

p

2
ffiffiffi
3

p c 12 þ
1

2
c 01;

B# !B$ !B#Bffiffiffi
2

p :
1ffiffiffi
3

p c 10 þ
1

2
c 11 $

ffiffiffi
5

p

2
ffiffiffi
3

p c 12;

ðB# !B#ÞS¼0: $ 1

6
c 10 $

1

2
ffiffiffi
3

p c 11 $
ffiffiffi
5

p

6
c 12 þ

ffiffiffi
3

p

2
c 01;

ðB# !B#ÞS¼2:

ffiffiffi
5

p

3
c 10 $

ffiffiffi
5

p

2
ffiffiffi
3

p c 11 þ
1

6
c 12: (4)

One can easily check that the matrix of the transformation
from the H % SLB eigenstates to the states of the meson
pairs is orthogonal.

III. PRODUCTION OF HEAVY MESON
PAIRS IN eþe$ ANNIHILATION

The heavy mesons are produced by the electromagnetic
current of the heavy quark, e.g., ( !b$%b), which in the

1A possible presence of an F-wave for a B# !B# pair can be
neglected in the near-threshold region.
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�ab = aH � bl

� = 1H � 0l

✓Spin structures imply the decay ratio of Υ ➜ B(*)B(*)



Decay ratio of Υ ➜ BB,BB*,B*B*
M.B.Voloshin, PRD85 034024(2012)

✓The decay ratio of Υ(5S) ➜ B(*)B(*) is given as

where we find the production rate of W−−
b2 is favored, while the production of W−−

b0 is sup-

pressed. Considering the phase space factors proportional to the cube of the pion momentum

!qπ, the relation for the production ratio (22) is modified as

f(W−−
b0 π) : f(W ′−−

b1 π) : f(W−−
b1 π) : f(W ′−−

b2 π) : f(W−−
b2 π)

2.0 : 6.3 : 6.4 : 3.5 : 10.0
. (23)

This result shows that the phase space corrections will not drastically change the result (22)

except for W ′−−
b2 π. The production ratio of W ′−−

b2 π is most affected, because the mass of

W ′−−
b2 is close to Υ(5S) and hence the phase space is reduced in comparison with those of

other states.

In summary, we have derived the model independent relations among various decay and

production rates for possible B(∗)B̄(∗) molecular states under the heavy quark symmetry.

Part of decay properties of Zb(10610) and Zb(10650) are well explained and the possible

decay patterns for neutral Z0
b (10610) are discussed in the present framework. We have

shown that the W−−
bJ decay into a spin singlet bottomonium is forbidden except for W−−

b1 .

We have also predicted the production rate of various W−−
bJ through the one pion emission

of Υ(5S). All of them can be tested experimentally and will provide important information

to further understand the exotic structure of the new particles.

Γ(Υ(5S) → BB̄) : Γ(Υ(5S) → B∗B̄ + c.c.) : Γ(Υ(5S) → B∗B̄∗)

1 : 4 : 7
. (24)
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✓The available data gives the ratio of the decay widths

where we find the production rate of W−−
b2 is favored, while the production of W−−

b0 is sup-

pressed. Considering the phase space factors proportional to the cube of the pion momentum

!qπ, the relation for the production ratio (22) is modified as

f(W−−
b0 π) : f(W ′−−

b1 π) : f(W−−
b1 π) : f(W ′−−

b2 π) : f(W−−
b2 π)

2.0 : 6.3 : 6.4 : 3.5 : 10.0
. (23)

This result shows that the phase space corrections will not drastically change the result (22)

except for W ′−−
b2 π. The production ratio of W ′−−

b2 π is most affected, because the mass of

W ′−−
b2 is close to Υ(5S) and hence the phase space is reduced in comparison with those of

other states.

In summary, we have derived the model independent relations among various decay and

production rates for possible B(∗)B̄(∗) molecular states under the heavy quark symmetry.

Part of decay properties of Zb(10610) and Zb(10650) are well explained and the possible

decay patterns for neutral Z0
b (10610) are discussed in the present framework. We have

shown that the W−−
bJ decay into a spin singlet bottomonium is forbidden except for W−−

b1 .

We have also predicted the production rate of various W−−
bJ through the one pion emission

of Υ(5S). All of them can be tested experimentally and will provide important information

to further understand the exotic structure of the new particles.

Γ(Υ(5S) → BB̄) : Γ(Υ(5S) → B∗B̄ + c.c.) : Γ(Υ(5S) → B∗B̄∗)
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The spin structure of Zb

✓The spin structures of Zb’s are given as 

Zb

Zb’

:

:

:

:

SH ⊗ Sl Component

1�
2
(0�H � 1�l )� 1�

2
(1�H � 0�l )

1�
2
(0�H � 1�l ) +

1�
2
(1�H � 0�l ) 1�

2
(BB̄� �B�B̄)(3S1)

B�B̄�(3S1)

✓Zb is a mixture state of 0H and 1H
✓(0H ⊗ 1l) decays to hbπ, ηbγ , ... 
✓(1H ⊗ 0l) decays to Υπ, χbJγ , ...



Zb ➜ χbJ γ

✓χb2 + γ(P-wave)

✓χb0 + γ(P-wave)

✓χb1 + γ(P-wave)

= (1�H � 1�l )|J=0 � (0+
H � 1+

l )

=
1
3
(1�H � 0�l )� 1�

3
(1�H � 1�l )|J=1 +

�
5

3
(1�H � 2�l )|J=1

= � 1�
3
(1�H � 0�l ) +

1
2
(1�H � 1�l )|J=1 +

15
6

(1�H � 2�l )|J=1

= �
�

5
3

(1�H � 0�l ) +
�

15
6

(1�H � 1�l )|J=1 +
1
6
(1�H � 2�l )|J=1

|�b0�(M1) > |J=1

|�b1�(M1) > |J=1

|�b2�(M1) > |J=1

�(Z0
b � �b0�) : �(Z0

b � �b1�) : �(Z0
b � �b2�)

1 : 3 : 5

✓This ratio is testable with experiment



Decays of Zb ➜ Υ(nS)π 

as hadronic molecules
S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, 
in preparation.



Branching fractions of Zb(’)

Belle results in quarkonium Roman Mizuk

Table 1: Branching fractions (B) of Zb(10610) and Zb(10650) assuming that the observed so far channels
saturate their decays.

Channel B of Zb(10610), % B of Zb(10650), %
ϒ(1S)π+ 0.32±0.09 0.24±0.07
ϒ(2S)π+ 4.38±1.21 2.40±0.63
ϒ(3S)π+ 2.15±0.56 1.64±0.40
hb(1P)π+ 2.81±1.10 7.43±2.70
hb(2P)π+ 2.15±0.56 14.8±6.22
B+  B∗0 +  B0B∗+ 86.0±3.6 –
B∗+  B∗0 – 73.4±7.0

3. Evidence for neutral isotriplet member Zb(10610)0

Both Zb(10610) and Zb(10650) are isotriplets with only charged components observed orig-
inally. Belle searched for their neutral components using the ϒ(5S) → ϒ(nS)π0π0 (n = 1,2)
decays [8]. These decays are observed for the first time and the measured branching fractions
B[ϒ(5S) → ϒ(1S)π0π0] = (2.25 ± 0.11 ± 0.22)× 10−3 and B[ϒ(5S) → ϒ(2S)π0π0] = (3.66 ±

0.22±0.48)×10−3, are in agreement with isospin relations.
Belle performed the Dalitz plot analyses of the ϒ(5S) → ϒ(1S,2S)π0π0 transitions using the

same model as for the charged pion channels (see Fig. 4). The Zb(10610)0 signal is found in
the ϒ(2S)π0 channel with the significance of 4.9σ including systematics. The Zb(10610)0 mass
of (10609+8

−6 ± 6)MeV/c2 is consistent with the charged Zb(10610)± mass. The signal of the
Zb(10610)0 in the ϒ(1S)π0 channel and the Zb(10650)0 signal are insignificant. The Belle data do
not contradict the existence of the Zb(10610)0 → ϒ(1S)π0 and the Zb(10650)0, but the available
statistics are insufficient to establish these signals.

4. Interpretations

As discussed at the end of Section 2, the assumption of molecular B(∗)  B∗ structure naturally
explains all observed so far properties of the Zb states. Their dynamical model, however, is an open
question. Proposed interpretations include presence of the compact tetraquark [9], non-resonant
rescattering [10], multiple rescatterings that result in the amplitude pole known as coupled channel
resonance [11] and deutron-like molecule bound by meson exchanges [12]. All these mechanisms
(except for the tetraquark) are intimately related and correspond rather to quantitative than to qual-
itative differences. Further experimental and theoretical studies are needed to clarify the nature of
the Zb states.

As discussed in Ref. [5], based on heavy quark symmetry one can expect more states with
similar nature but with differing quantum numbers. Such states should be accessible in radiative
and hadronic transitions in data samples with high statistics at and above the ϒ(5S), that will be
available at the SuperKEKB.

5

✓The decay ratios seems not to be reflected 
on the difference of phase space.

~×10
~×0.5

�q�(2S)/�q�(1S) � 0.55 �q�(3S)/�q�(2S) � 0.42



Diagrams for Zb(’)+ ➜ Υ(nS)π+

BB̄∗ and B∗B̄, Z ′
b is B∗B̄∗ molecule, we define the wavefunction of them as

|Zb〉 =
1√
2
|BB̄∗ −B∗B̄〉 , (1)

|Z ′
b〉 = |B∗B̄∗〉 . (2)

As hadronic molecular picture, the diagrams contributing to the decay Z(′)+
b → Υ(nS)π+

will be discribed with the intermediate BB∗ meson loops at lowest order. To calculate

the amplitude, we need to set the effective Lagrangians for the couplings. We set the

phenomenological Lagrangians at vertices of Z(′)
b and B(∗) mesons, which is

LZBB∗ = gZBB∗Zµ(BB̄∗
µ + B∗

µB̄) , (3)

LZ′B∗B∗ = gZ′B∗B∗εµναβ∂µZ
′
νB

∗
αB̄∗

β , (4)

where the coupling constants gZBB∗ and gZ′B∗B∗ are determined from the experimental

obsereved values for Z ′ → B∗B̄∗. The experimental results indicate that Γ(Z+
b → B+B̄∗0 +

B∗+B̄0) = 15.82 MeV and Γ(Z ′+
b → B∗+B̄∗0) = 8.44 MeV. Then we set the gBB∗Zb

= 1.04

and gB∗B∗Z′
b
= 1.30 to reproduce the decay widths of the open flavor channels.

We adopt the effective Lagrangians for the couplings reflected on heavy quark and chiral

symmetries [6]. Their forms are as follows:

LBB∗π = −igBB∗π(Bi∂µπijB̄
∗µ
j −B∗µ

i ∂µπijB̄j) , (5)

LB∗B∗π =
1

2
gB∗B∗πεµναβB∗

iµ

←→
∂ αB̄∗

jβ∂νπij , (6)

LBBΥ = igBBΥΥµ(∂µBB −B∂µB) , (7)

LBB∗Υ = −gBB∗Υεµναβ∂µΥν(∂αB∗
βB + B∂αB∗

β) , (8)

LB∗B∗Υ = −igB∗B∗Υ {Υµ(∂µB
∗νB∗

ν −B∗ν∂µB
∗
ν) + (∂µΥνB

∗ν −Υν∂µB
∗ν)B∗ν

+B∗µ(Υν∂µB
∗
ν − ∂µΥνB∗ν)} (9)

Coupling constants gBB∗π and gB∗B∗π are related by the heavy quark symmetry as follows:

gBB∗π =
2g

fπ

√
mBm∗

B , gB∗B∗π =
gBB∗π√
mBm∗

B

, (10)

where fπ = 132MeV is the pion decay constant. It is difficlut to determine the coupling g

from the experimental value in bottom sector, owing to kinematically forbidden the decay

B∗ → Bπ. We adopt g = 0.59

3

✓Assuming that Zb(‘) is hadronic molecule.

✓Feynman diagrams are described 
with hadronic loops

Zb Zb’
ΥΥ

π π

B

B* B*

B*
B(*)B(*)



Effective Lagrangians

BB̄∗ and B∗B̄, Z ′
b is B∗B̄∗ molecule, we define the wavefunction of them as

|Zb〉 =
1√
2
|BB̄∗ −B∗B̄〉 , (1)

|Z ′
b〉 = |B∗B̄∗〉 . (2)

As hadronic molecular picture, the diagrams contributing to the decay Z(′)+
b → Υ(nS)π+

will be discribed with the intermediate BB∗ meson loops at lowest order. To calculate

the amplitude, we need to set the effective Lagrangians for the couplings. We set the

phenomenological Lagrangians at vertices of Z(′)
b and B(∗) mesons, which is

LZBB∗ = gZBB∗MzZ
µ(BB̄∗

µ + B∗
µB̄) , (3)

LZ′B∗B∗ = gZ′B∗B∗εµναβ∂µZ
′
νB

∗
αB̄∗

β , (4)

where the coupling constants gZBB∗ and gZ′B∗B∗ are determined from the experimental

obsereved values for Z ′ → B∗B̄∗. The experimental results indicate that Γ(Z+
b → B+B̄∗0 +

B∗+B̄0) = 15.82 MeV and Γ(Z ′+
b → B∗+B̄∗0) = 8.44 MeV. Then we set the gBB∗Zb

= 1.04

and gB∗B∗Z′
b
= 1.30 to reproduce the decay widths of the open flavor channels.

We adopt the effective Lagrangians for the couplings reflected on heavy quark and chiral

symmetries [6]. Their forms are as follows:

LBB∗π = −igBB∗π(Bi∂µπijB̄
∗µ
j −B∗µ

i ∂µπijB̄j) , (5)

LB∗B∗π =
1

2
gB∗B∗πεµναβB∗

iµ

←→
∂ αB̄∗

jβ∂νπij , (6)

LBBΥ = igBBΥΥµ(∂µBB −B∂µB) , (7)

LBB∗Υ = −gBB∗Υεµναβ∂µΥν(∂αB∗
βB + B∂αB∗

β) , (8)

LB∗B∗Υ = −igB∗B∗Υ {Υµ(∂µB
∗νB∗

ν −B∗ν∂µB
∗
ν) + (∂µΥνB

∗ν −Υν∂µB
∗ν)B∗ν

+B∗µ(Υν∂µB
∗
ν − ∂µΥνB∗ν)} (9)

Coupling constants gBB∗π and gB∗B∗π are related by the heavy quark symmetry as follows:

gBB∗π =
2g

fπ

√
mBm∗

B , gB∗B∗π =
gBB∗π√
mBm∗

B

, (10)

where fπ = 132MeV is the pion decay constant. It is difficlut to determine the coupling g

from the experimental value in bottom sector, owing to kinematically forbidden the decay

B∗ → Bπ. We adopt g = 0.59

3

can be related to the single quantity F̂ since f Da
! f Da*

!F̂/!mDa
.

It is also possible to write down an expression for the
strong couplings involving heavy mesons and the kaon. The
Ds
(*)D (*)K couplings, in the soft p! K→0 limit, can be related

to a single low energy parameter g, as it turns out consider-
ing the effective QCD Lagrangian describing the strong in-
teractions between the heavy Da

(*)Db
(*) mesons and the octet

of the light pseudoscalar mesons !26":

LI!ig Tr!Hb#$#5Aba
$ H a" %2.7&

with the operator A given by

A$ba!
1
2 %'†($'"'($'†&ba %2.8&

and H a!#0Ha
†#0. This allows to relate the Ds

(*)D (*)K cou-
plings, defined through the matrix elements

)D 0%p &K"%q &!Ds*"%p#q ,*&+!gDs*
"D 0K"%*•q &

)D *0%p ,,&K"%q &!Ds*"%p#q ,*&+!i*-.$#p-*.q$,#*

$gDs*
"D *0K",

%2.9&

to the coupling g:

gDs*
"D 0K"!2!mDmDs*

g
f K

gDs*
"D *0K"!"2!mDs*

mD*

g
f K
. %2.10&

All the above expressions are valid in the infinite limit for
the charm quark mass. We neglect corrections due to the
finite mass of the charm quark.

III. COUPLINGS OF PAIRS OF HEAVY-LIGHT MESONS
TO QUARKONIUM STATES

The other strong vertex in the diagrams in Fig. 1 involves
hc and a pair of open charm mesons. Also in this case we
exploit the infinite heavy quark mass limit. For mesons with
two heavy quarks Q1Q 2 heavy quark flavor symmetry does
not hold any longer, but degeneracy is expected under rota-
tions of the two heavy quark spins. This allows us to build up
heavy meson multiplets for each value of the relative angular
momentum ! . For !!0 one has a doublet comprehensive of
a pseudoscalar and a vector state, ,c and J// in case of
charmonium. The corresponding 4$4 matrix reads as !27"

R (Q1Q 2)!" 1#v”
2 # !L$#$"L#5"" 1"v”

2 # , %3.1&

with L$!J// and L!,c in the case of c c . For !!1, four
states can be built which are degenerate in the heavy quark
limit. The corresponding spin multiplet reads

P (Q1Q 2)$!" 1#v”
2 # " 02

$-#-#
1
!2

*$-.#v-#.01#

#
1
!3

%#$"v$&00#h1
$#5# " 1"v”

2 # %3.2&

where, in the case of c c , 02!0c2 , 01!0c1 and 00!0c0
correspond the spin triplet, while the spin singlet is h1!hc
!28". Also the fields in Eqs. %3.1&, %3.2& contain a factor !m ,
with m the meson mass.
Using Eqs. %3.1& and %3.2&, together with Eq. %2.1& repre-

senting the heavy-light Q1q a pseudoscalar and vector states,
it is possible to write down the expressions for the effective
couplings between heavy-heavy mesons and pairs of heavy-
light mesons we are interested in. For !!1 Q1Q 2 state, the
most general Lagrangian describing the coupling to two
heavy-light mesons Q1q a and qaQ 2 can be written as fol-
lows:

L1!i
g̃1
2 Tr!P (Q1Q 2)$H 2a%11#$#12v$&H 1a"

#H.c.#%Q1↔Q2& %3.3&

where 11 and 12 are two coefficients, H1a is given in Eq.
%2.1& and H2a is the matrix describing the heavy-light me-
sons with quark content qaQ 2:

H2a!!M a!
$#$"M a!#5"" 1"v”

2 # . %3.4&

Due to the property P$v$!0 only the term proportional to
11 contributes, and therefore

L1!i
g1
2 Tr!P (Q1Q 2)$H 2a#$H 1a"#H.c.#%Q1↔Q2&,

%3.5&

where g1! g̃1•11. This expression accounts for the fact that
the two heavy-light mesons are coupled to the heavy-heavy
state in S wave, and therefore the matrix elements do not
depend on their relative momentum. Moreover, this expres-
sion is invariant under independent rotations of the spin of
the heavy quarks, representing the decoupling of the spin in
the infinite heavy quark mass limit. This can be easily seen
considering that under independent heavy quark spin rota-
tions S1"SU(2)Q1

and S2"SU(2)Q2
the following trans-

formation properties hold for the various multiplets:

COLANGELO, DE FAZIO, AND PHAM PHYSICAL REVIEW D 69, 054023 %2004&
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!hc!(c c)V!A!0" is zero due to conservation of parity and
charge conjugation. This does not imply that the decay is
forbidden, as other decay mechanisms can be invoked,
namely hc production via c c pair creation in the color octet
configuration. From the hadronic point of view, one can also
consider the decay as proceeding by rescattering processes
induced by the same (b c)(c s) effective weak Hamiltonian in
Eq. #1.2$, processes that essentially account for a rearrange-
ment of the quarks in the final state. Such effects are not
CKM suppressed, and their role must be assessed by explicit
#even though model dependent$ calculations. Notice that
color octet and rescattering descriptions can represent two
ways to describe the same physics underlying the nonlep-
tonic transition, looking from the short-distance or the long-
distance view points, respectively.
We consider rescattering processes corresponding to the

decay chain B"→Xu c
0 Y c s

"→K"M c c , where X and Y are
open charm resonances primarily produced in weak B" tran-
sitions. The lowest lying intermediate states Xu c

0 and Y c s
" are

the mesons Ds
(*)" and D (*)0, and we describe their rescat-

tering by the exchange of D (s)
(*) resonances, as depicted in

Fig. 1.
In order to analyze the diagrams in Fig. 1 we need the

weak vertices B→Ds
(*)D (*) and two strong vertices, one

describing the coupling of a pair of charmed mesons to kaon,
the other one representing the interaction of the charmonium
state hc to a pair of D (s)

(*) mesons. All nonperturbative quan-
tities entering in such vertices can be related to few hadronic
parameters once the infinite heavy quark mass limit is
adopted.
In the following section we analyze the couplings of the

charmonium states to pairs of open charm mesons. Here we
consider strong interactions of mesons HQ containing a
single heavy quark Q which can be described in the frame-
work of the heavy quark effective theory #HQET$ %23&, ex-
ploiting the heavy quark spin and flavor symmetries holding
in QCD for mQ→' . In this limit the heavy quark four ve-
locity v coincides with that of the hadron and it is conserved
by strong interactions %24&. Because of the invariance under
rotations of the heavy quark spin sQ , states differing only for
the orientation of sQ are degenerate in mass and form a dou-
blet. When the orbital angular momentum of the light de-
grees of freedom relative to Q is !#0, the two states in the
doublet have spin-parity JP#(0",1") and correspond to
(D (s) , D (s)* ), (B (s) , B (s)* ). This doublet can be represented
by a 4$4 matrix:

Ha#" 1%v”
2 # %M a

()("M a)5& , #2.1$

with M ( corresponding to the vector state and M to the pseu-
doscalar one (a is a light flavor index$. The fields M a and
M a* contain a factor !mMa

(*), with m the meson mass.
In the infinite heavy quark mass limit it is possible to

express weak as well as strong matrix elements involving
heavy mesons in terms of few universal quantities. Let us
consider the weak amplitude B"→Ds

(*)"D (*)0, for which

there is empirical evidence that the calculation by factoriza-
tion reproduces the main experimental findings %25&. Ne-
glecting the contribution of the operators O3"10 in Eq. #1.3$
we can write

!Ds
(*)"D (*)0!HW!B""#

GF

!2
VcbVcs* a1!D (*)0!#V"A $(!B""

$!Ds
(*)"!#V"A $(!0" #2.2$

with a1#c1%c2 /Nc . In the infinite heavy quark mass limit,
the matrix elements in Eq. #2.2$ can be written in terms of a
single form factor, the Isgur-Wise function * , and a single
leptonic constant F̂ %23&. The B"→D (*)0 matrix elements
read

!D0#v!$!V(!B"#v $"#!mBmD*#v•v!$#v%v!$(

!D*0#v!,+$!V(!B"#v $"#"i!mBmD**#v•v!$

$+,*-.,)(v.v)! #2.3$

!D*0#v!,+$!A(!B"#v $"#!mBmD**#v•v!$

$+,*%#1%v•v!$g,("v,v!(& ,

v and v! being B" and D (*)0 four-velocities, respectively, +
the D* polarization vector and *(v•v!) the Isgur-Wise form
factor. The weak current for the transition from a heavy to a
light quark Q→qa , given at the quark level by q a)((1
")5)Q , can be written in terms of a heavy meson and light
pseudoscalars. The octet of the light pseudoscalar mesons is
represented by *#eiM/ f , with

M#"!1
2/0%!1

60 /% K%

/"
"!1

2/0%!1
60 K0

K" K 0 "!2
30

#
#2.4$

and f $ f /#131 MeV, and the effective heavy-to-light cur-
rent, written at the lowest order in the light meson deriva-
tives, reads

La
(#

F̂
2 Tr%)(#1")5$Hb*ba

† & . #2.5$

In this way the matrix elements !0!q a)((1
")5)c!Da

(*)(v)" , defined as

!0!q a)()5c!Da#v $"# f Da
mDa

v(

!0!q a)(c!Da*#v ,+$"# f Da*mDa*+
( #2.6$
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✓Lagrangians for ZBB* and ZB*B*
✓Couplings are determined by Zb ➜ BB* and  Zb ➜ B*B*

✓Lagrangian for pion and B(B*) meson
✓Coupling g is determined by D* ➜ Dπ

g = 0.59



Couplings of Υ and B(B*)

H1a→S1H1a H 1a→H 1aS1
†

H2a→H2aS2
† H 2a→S2H 2a

P (Q1Q 2)!→S1P (Q1Q 2)! P (Q1Q 2)!→P (Q1Q 2)!S2
†

R (Q1Q 2)→S1R (Q1Q 2) R (Q1Q 2)→R (Q1Q 2)S2
† . "3.6#

Equation "3.5# shows that a unique coupling describes the
P!HH interaction, i.e. the same coupling controls the inter-
action of heavy-light mesons both with the three $c states,
both with hc . In particular, from Eq. "3.5# it follows that

%D "s #* "p1 ,&1#D (s)"p2#!hc"p ,&#'!gD(s)* D(s)hc
"&1*•&#

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!hc"p ,&#'

!igD(s)* D(s)* hc

"&()*+p(&)&1**&2*+ "3.7#

with

gD(s)* D(s)hc
!#2g1!mhc

mD(s)
mD(s)*

gD(s)* D(s)* hc
!2g1!mD(s)*

2

mhc

. "3.8#

Analogously:

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!$c0"p #'!#gD(s)* D(s)* $c0
"&1*•&2*#

%D (s)"p1#D (s)"p2#!$c0"p #'!#gD(s)D(s)$c0
"3.9#

with

gD(s)* D(s)* $c0
!#

2
!3

g1!m$c0
mD(s)*

gD(s)D(s)$c0
!#2!3g1!m$c0

mD(s)
. "3.10#

The subscripts "1# and "2# refer to the meson with a charm
and an anticharm quark, respectively; & , &1 and &2 are polar-
ization vectors.
Equations "3.7#–"3.9# show that spin symmetry produces

stringent relations between the couplings of $c0 and hc to
open charm mesons, relations that we exploit below. More-
over, they also imply that the couplings of a single charmo-
nium state to open charm pseudoscalar and vector mesons
are related in absolute value and in sign as well, a property
that allows a proper analysis of the amplitudes in Fig. 1
where the relative signs between different amplitudes play an
important role.
For the !!0 states represented by the multiplet "3.1#, the

interactions with the heavy-light vector and pseudoscalar
mesons proceed in P wave and can be described by a La-
grangian containing a derivative term:

L2!
g2
2 Tr,R (Q1Q 2)H 2a -”↔H 1a.$H.c.$"Q1↔Q2#

"3.11#

which is also invariant under independent heavy quark spin
rotations. The action of the derivative produces a factor of
the residual momentum k, i.e. the quantity for which the
hadron and the heavy quark four momentum differ: M Hv!
!mQv!$k! , k being finite in the heavy quark limit. The
couplings of heavy-light charmed mesons to J// follow
from Eq. "3.11#:

%D "s #* "p1 ,&1#D "s #* "p2 ,&2#!J//"p ,&#'

!gD(s)* D(s)* /,"&•&2*#"&1*•q #

#"&•q #"&1*•&2*#$"&•&1*#"&2*•q #]

%D "s #* "p1 ,&1#D (s)"p2#!J//"p ,&#'

!gD(s)* D(s)/
i&)!(*v)&!&1*(q*

"3.12#

%D (s)"p1#D (s)"p2#!J//"p ,&#'

!gD(s)D(s)/"&•q #

where q is the difference in the residual momenta of the two
heavy-light charmed mesons q!k1#k2. Since p1!mD(s)

(*)v
$k1 and p2!mD(s)

(*)v$k2, then q!p1#p2. The three cou-
plings in Eq. "3.12# are related to the single parameter g2:

gD(s)* D(s)* /!#2g2!m/mD(s)*

gD(s)* D(s)/
!2g2!m/mD(s)

mD(s)*
"3.13#

gD(s)D(s)/
!2g2!m/mD(s)

.

In principle, the couplings g1 and g2 must be computed
by nonperturbative methods. An estimate can be obtained
invoking vector meson dominance "VMD# arguments. For
example, one can consider the D-meson matrix element of
the scalar c c current: %D(v!)!c c!D(v)', assuming the domi-
nance in the t channel of the nearest resonance, i.e. the scalar
c c state, and using the normalization of the Isgur-Wise form
factor at the zero-recoil point v!v!. This allows to express
gDD$c0

in terms of the constant f $c0
that parametrizes the

matrix element

%0!c c!$c0"q #'! f $c0
m$c0

, "3.14#

obtaining

gDD$c0
!2

mDm$c0

f $c0

, "3.15#

a relation which determines g1 once f $c0
is known:
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can be related to the single quantity F̂ since f Da
! f Da*

!F̂/!mDa
.

It is also possible to write down an expression for the
strong couplings involving heavy mesons and the kaon. The
Ds
(*)D (*)K couplings, in the soft p! K→0 limit, can be related

to a single low energy parameter g, as it turns out consider-
ing the effective QCD Lagrangian describing the strong in-
teractions between the heavy Da

(*)Db
(*) mesons and the octet

of the light pseudoscalar mesons !26":

LI!ig Tr!Hb#$#5Aba
$ H a" %2.7&

with the operator A given by

A$ba!
1
2 %'†($'"'($'†&ba %2.8&

and H a!#0Ha
†#0. This allows to relate the Ds

(*)D (*)K cou-
plings, defined through the matrix elements

)D 0%p &K"%q &!Ds*"%p#q ,*&+!gDs*
"D 0K"%*•q &

)D *0%p ,,&K"%q &!Ds*"%p#q ,*&+!i*-.$#p-*.q$,#*

$gDs*
"D *0K",

%2.9&

to the coupling g:

gDs*
"D 0K"!2!mDmDs*

g
f K

gDs*
"D *0K"!"2!mDs*

mD*

g
f K
. %2.10&

All the above expressions are valid in the infinite limit for
the charm quark mass. We neglect corrections due to the
finite mass of the charm quark.

III. COUPLINGS OF PAIRS OF HEAVY-LIGHT MESONS
TO QUARKONIUM STATES

The other strong vertex in the diagrams in Fig. 1 involves
hc and a pair of open charm mesons. Also in this case we
exploit the infinite heavy quark mass limit. For mesons with
two heavy quarks Q1Q 2 heavy quark flavor symmetry does
not hold any longer, but degeneracy is expected under rota-
tions of the two heavy quark spins. This allows us to build up
heavy meson multiplets for each value of the relative angular
momentum ! . For !!0 one has a doublet comprehensive of
a pseudoscalar and a vector state, ,c and J// in case of
charmonium. The corresponding 4$4 matrix reads as !27"

R (Q1Q 2)!" 1#v”
2 # !L$#$"L#5"" 1"v”

2 # , %3.1&

with L$!J// and L!,c in the case of c c . For !!1, four
states can be built which are degenerate in the heavy quark
limit. The corresponding spin multiplet reads

P (Q1Q 2)$!" 1#v”
2 # " 02

$-#-#
1
!2

*$-.#v-#.01#

#
1
!3

%#$"v$&00#h1
$#5# " 1"v”

2 # %3.2&

where, in the case of c c , 02!0c2 , 01!0c1 and 00!0c0
correspond the spin triplet, while the spin singlet is h1!hc
!28". Also the fields in Eqs. %3.1&, %3.2& contain a factor !m ,
with m the meson mass.
Using Eqs. %3.1& and %3.2&, together with Eq. %2.1& repre-

senting the heavy-light Q1q a pseudoscalar and vector states,
it is possible to write down the expressions for the effective
couplings between heavy-heavy mesons and pairs of heavy-
light mesons we are interested in. For !!1 Q1Q 2 state, the
most general Lagrangian describing the coupling to two
heavy-light mesons Q1q a and qaQ 2 can be written as fol-
lows:

L1!i
g̃1
2 Tr!P (Q1Q 2)$H 2a%11#$#12v$&H 1a"

#H.c.#%Q1↔Q2& %3.3&

where 11 and 12 are two coefficients, H1a is given in Eq.
%2.1& and H2a is the matrix describing the heavy-light me-
sons with quark content qaQ 2:

H2a!!M a!
$#$"M a!#5"" 1"v”

2 # . %3.4&

Due to the property P$v$!0 only the term proportional to
11 contributes, and therefore

L1!i
g1
2 Tr!P (Q1Q 2)$H 2a#$H 1a"#H.c.#%Q1↔Q2&,

%3.5&

where g1! g̃1•11. This expression accounts for the fact that
the two heavy-light mesons are coupled to the heavy-heavy
state in S wave, and therefore the matrix elements do not
depend on their relative momentum. Moreover, this expres-
sion is invariant under independent rotations of the spin of
the heavy quarks, representing the decoupling of the spin in
the infinite heavy quark mass limit. This can be easily seen
considering that under independent heavy quark spin rota-
tions S1"SU(2)Q1

and S2"SU(2)Q2
the following trans-

formation properties hold for the various multiplets:
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TABLE I: Coupling constants gn and the mass-shifts δM of Zb. Mth is the thresholds of the decay

channel. Unit of the values is MeV

Υ(1S)π Υ(2S)π Υ(3S)π

Exp. 0.10 1.00 0.68

g2
B∗B(∗)Υ

qcm 0.78 1.00 0.61

gB∗B∗Υ 13.3 20.2 24.2

qcm(MeV) 1119 617 261

4

✓Vector meson dominance determines the couplings

≈
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B
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< 0|b�µb̄|� >= f�⇥µ gBB�(nS) =
m�(nS)

f�(nS)

gBB�(1S) = 13.2

gBB�(3S) = 24.1

gBB�(2S) = 20.1

P. Colangelo, et al, 
PRD64 054023 (2004)



Diagrams for Zb’+ ➜ Υ(nS)π+
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Diagrams for Zb’+ ➜ Υ(nS)π+
✓The explicit transition amplitude is given as follows

P
q

P-q

q-P+k

p=P-k

k

iM(B)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′εµναβP µεν

zε
α
B∗+εβ

B̄∗0 ]

× [igB∗B∗Υ(nS)εδτθφv
δετ

υε
α
B∗+(2q − P + k)φ][gBB∗π(εB̄∗0 · k)]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − P + k)2 −m2
B

F(q2, k2) (11)

F(q2, k2) =
Λ2

Z

q2 + Λ2
Z

Λ2

k2 + Λ2

Λ2

k2 + Λ2
(12)

TABLE I: The partial decay widths of Zb(10610)+.

No Cutoff ΛZ = 1100 , Λ = 600 exp

Υ(1S)π+ 95.5 0.081 0.059

Υ(2S)π+ 19.8 0.51 0.806

Υ(3S)π+ 0.485 0.14 0.396

TABLE II: The partial decay widths of Z ′
b(10650)+.

No Cutoff ΛZ = 1000 , Λ = 600 exp

Υ(1S)π+ 71.3 0.044 0.028

Υ(2S)π+ 17.6 0.31 0.28

Υ(3S)π+ 0.86 0.18 0.19
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Numerical results
✓Partial decay widths of Zb’(10650)

✓Partial decay widths of Zb(10610)

✓The momentum of final states mainly control 
the results.
✓The form factor plays significant roll.

iM(B)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′εµναβP µεν

zε
α
B∗+εβ

B̄∗0 ]

× [igB∗B∗Υ(nS)εδτθφv
δετ

υε
α
B∗+(2q − P + k)φ][gBB∗π(εB̄∗0 · k)]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − P + k)2 −m2
B

F(q2, k2) (11)

F(q2, k2) =
Λ2

Z

q2 + Λ2
Z

Λ2

k2 + Λ2

Λ2

k2 + Λ2
(12)

TABLE I: The partial decay widths of Zb(10610)+.

No Cutoff ΛZ = 1100 , Λ = 600 exp

Υ(1S)π+ 95.5 0.081 0.059

Υ(2S)π+ 19.8 0.51 0.806

Υ(3S)π+ 0.485 0.14 0.396

TABLE II: The partial decay widths of Z ′
b(10650)+.

No Cutoff ΛZ = 1000 , Λ = 600 exp

Υ(1S)π+ 71.3 0.044 0.028

Υ(2S)π+ 17.6 0.31 0.28

Υ(3S)π+ 0.86 0.18 0.19

[1] Belle Collaboration, I. Adachi, (2011), arXiv:1105.4583.

[2] Belle Collaboration, A. Bondar et al., Phys.Rev.Lett. 108, 122001 (2012), arXiv:1110.2251.

[3] A. Bondar, A. Garmash, A. Milstein, R. Mizuk, and M. Voloshin, Phys.Rev. D84, 054010

(2011), arXiv:1105.4473.

[4] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys.Rev. D86, 014004 (2012),

arXiv:1111.2921.

[5] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.Rev. D86, 117502 (2012),

arXiv:1210.3170.

[6] P. Colangelo, F. De Fazio, and T. Pham, Phys.Rev. D69, 054023 (2004), arXiv:hep-

ph/0310084.

4

iM(B)
B∗B∗ = (i)3

∫
d4q

(2π)4
[igz′εµναβP µεν

zε
α
B∗+εβ

B̄∗0 ]

× [igB∗B∗Υ(nS)εδτθφv
δετ

υε
α
B∗+(2q − P + k)φ][gBB∗π(εB̄∗0 · k)]

× 1

(q)2 −m2
B∗

1

(P − q)2 −m2
B∗

1

(q − P + k)2 −m2
B

F(q2, k2) (11)

F(q2, k2) =
Λ2

Z

q2 + Λ2
Z

Λ2

k2 + Λ2

Λ2

k2 + Λ2
(12)

TABLE I: The partial decay widths of Zb(10610)+.

No Cutoff ΛZ = 1100 , Λ = 600 exp

Υ(1S)π+ 95.5 0.081 0.059

Υ(2S)π+ 19.8 0.51 0.806

Υ(3S)π+ 0.485 0.14 0.396

TABLE II: The partial decay widths of Z ′
b(10650)+.

No Cutoff ΛZ = 1000 , Λ = 600 exp

Υ(1S)π+ 71.3 0.044 0.028

Υ(2S)π+ 17.6 0.31 0.28

Υ(3S)π+ 0.86 0.18 0.19

[1] Belle Collaboration, I. Adachi, (2011), arXiv:1105.4583.

[2] Belle Collaboration, A. Bondar et al., Phys.Rev.Lett. 108, 122001 (2012), arXiv:1110.2251.

[3] A. Bondar, A. Garmash, A. Milstein, R. Mizuk, and M. Voloshin, Phys.Rev. D84, 054010

(2011), arXiv:1105.4473.

[4] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, Phys.Rev. D86, 014004 (2012),

arXiv:1111.2921.

[5] S. Ohkoda, Y. Yamaguchi, S. Yasui, and A. Hosaka, Phys.Rev. D86, 117502 (2012),

arXiv:1210.3170.

[6] P. Colangelo, F. De Fazio, and T. Pham, Phys.Rev. D69, 054023 (2004), arXiv:hep-

ph/0310084.

4



• We study the decay properties of Zb as 
hadronic molecules.

• The spin structure of Zb implies that Zb ➜ hbπ 
• Analyzing the spin structure gives useful 
information of the decay properties. 

• We analyze the decays of Zb ➜ Υπ with the 
intermediate meson loops and the form factor.

Summary


