Decays of Z_b resonance as hadronic molecules

S. Ohkoda^A Y. Yamaguchi^A, S. Yasui^B and A. Hosaka^A ^AResearch Center for Nuclear Physics (RCNP) ^BKEK theory center

J-PARC研究会 at 東海, 9/12/2013

Outline

- Introduction
 - Z_b(10610) and Z_b(10650)
- The relation of spin structures and decay properties of Z_b
- Decays of $Z_b \rightarrow \Upsilon$ (nS) π as hadronic molecules
- Summary

Zb(10610) and Zb(10650)

Decay process

 $\begin{array}{l} \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \Upsilon(\mathsf{n}S) \ \pi \ \pi \\ \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \mathsf{h}_{\mathrm{b}}(\mathsf{m}\mathsf{P})\pi \ \pi \\ \checkmark \Upsilon(5S) \rightarrow \mathsf{Z}_{\mathrm{b}}\pi \rightarrow \mathsf{B}^{*}\overline{\mathsf{B}}^{(*)} \ \pi \ \pi \\ \end{array} \\ \begin{array}{l} \ast \mathsf{n}=1,2,3 \ \mathsf{m}=1,2 \end{array}$

Mass and width

 $\begin{array}{l} \checkmark Z_{b}(10610): Z_{b} \\ M = 10607.4 \pm 2.0 \; \text{MeV} \; {\sim} B\overline{B}^{*} \\ \Gamma = 18.3 \pm 2.4 \; \text{MeV} \\ \checkmark Z_{b}(10650): Z_{b}' \\ M = 10652.2 \pm 1.5 \; \text{MeV} \; {\sim} B^{*}\overline{B}^{*} \\ \Gamma = 11.5 \pm 2.2 \; \text{MeV} \end{array}$

Belle group, PRL108, 112001 (2012).

Properties of Zb

Exotic quantum numbers

 $\checkmark I^{G}(J^{P})=1+(1+)$ $\checkmark Z_{b}$ is the "genuine" exotic state

Exotic twin resonances

 \checkmark The masses of Z_b's are very close to the respective thresholds of BB^{*} and B^{*}B^{*}

Exotic decays

 \checkmark The decay of Υ (5S) \rightarrow Z_b $\pi \rightarrow$ h_b(mP) $\pi \pi$ is not suppressed although it needs spin flip

Z_b is a candidate of B^{*}B^(*) molecule !

Branching fractions of Zb^(')

Channel	\mathscr{B} of $Z_b(10610), \%$	\mathscr{B} of $Z_b(10650), \%$
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	2.15 ± 0.56	14.8 ± 6.22
$B^+B^{*0} + B^0B^{*+}$	86.0 ± 3.6	_
$B^{*+}B^{*0}$	_	73.4 ± 7.0

✓ Open flavor channels are dominant
 ✓ h_bπ decays are not suppressed
 ✓ The decay ratios seems not to be reflected on
 the difference of phase space

Relations of spin structures and decay properties of Z_b

S. Ohkoda, Y. Yamaguchi, S. Yasui and A. Hosaka, Phys.Rev. D86, 117502 (2012).

Light spin complex

✓ In the heavy quark limit, new conserved quantity appear —— light spin complex

- $S_{\mbox{\tiny I}}$: Light spin complex
- J : Total angular momentum
- S_H : Heavy quark spin

 \checkmark We can write the wave function of heavy hadrons as the direct product of SH \otimes SI

	JPC		S н 🛞 S ı		b b(^{2S+1} LJ)
Υ:	1	÷	1н ⊗ Оі	:	<mark>bb(³S</mark> 1)
h ⊳ :	1+-	:	0н Ӿ 1і	1	bb(¹ P ₁)
Х ы:	1++	:	(1н ⊗ 1ı) 」	1	b <mark>b(</mark> ³PJ)

Spin structure of meson pairs

✓ The spin structure of heavy meson pairs is derived with spin recoupling formula.

 $B^*\bar{B}^*({}^{3}S_1) : \left[[b\bar{q}]^1, [\bar{b}q]^1 \right]^1$ $= \sum_{H,l} \hat{1}\hat{1}\hat{H}\hat{l} \begin{cases} 1/2 & 1/2 & 1\\ 1/2 & 1/2 & 1\\ H & l & 1 \end{cases} \left[[b\bar{b}]^H, [\bar{q}q]^l \right]^1$ $= \frac{1}{\sqrt{2}} (0_H^- \otimes 1_l^-) + \frac{1}{\sqrt{2}} (1_H^- \otimes 0_l^-)$

 \checkmark Now consider the heavy meson pairs for JPC=1--

 $B\bar{B}({}^{1}P_{1}), \frac{1}{\sqrt{2}}(B\bar{B}^{*} + B^{*}\bar{B})({}^{3}P_{1}),$ $B^{*}\bar{B}^{*}({}^{1}P_{1}), B^{*}\bar{B}^{*}({}^{5}P_{1}), B^{*}\bar{B}^{*}({}^{5}F_{1})$

Spin structure of meson pairs

$$B\bar{B}: \frac{1}{2\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12} + \frac{1}{2}\psi_{01};$$

$$\frac{B^*\bar{B} - \bar{B}^*B}{\sqrt{2}}: \frac{1}{\sqrt{3}}\psi_{10} + \frac{1}{2}\psi_{11} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{12};$$

$$(B^*\bar{B}^*)_{S=0}: -\frac{1}{6}\psi_{10} - \frac{1}{2\sqrt{3}}\psi_{11} - \frac{\sqrt{5}}{6}\psi_{12} + \frac{\sqrt{3}}{2}\psi_{01};$$

$$(B^*\bar{B}^*)_{S=2}: \frac{\sqrt{5}}{3}\psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}}\psi_{11} + \frac{1}{6}\psi_{12}.$$

$$\psi_{ab} = a_H \otimes b_l$$

$$\Upsilon = 1_H \otimes 0_l$$

 \checkmark Spin structures imply the decay ratio of $\Upsilon \rightarrow B^{(*)}\overline{B}^{(*)}$

EXP) $\Gamma(\Upsilon(5S) \to B\bar{B}) : \Gamma(\Upsilon(5S) \to B^*\bar{B} + c.c.) : \Gamma(\Upsilon(5S) \to B^*\bar{B}^*)$ 1 : 2.5 : 7

The spin structure of Z_b

 \checkmark The spin structures of $Z_{\rm b}{}^{\rm \prime}{}^{\rm s}$ are given as

	S н Ӿ Sı	Component
Zb	$\frac{1}{\sqrt{2}}(0_{H}^{-}\otimes 1_{l}^{-}) + \frac{1}{\sqrt{2}}(1_{H}^{-}\otimes 0_{l}^{-})$	$\frac{1}{\sqrt{2}}(B\bar{B}^* - B^*\bar{B})({}^3S_1)$
Z _b '	$\frac{1}{\sqrt{2}}(0_{H}^{-}\otimes 1_{l}^{-}) - \frac{1}{\sqrt{2}}(1_{H}^{-}\otimes 0_{l}^{-})$	$B^*\bar{B}^*(^3S_1)$

✓ Z_b is a mixture state of O_H and 1_H ✓ (O_H \otimes 1_l) decays to h_b π , $\eta_{\text{b}}\gamma$, ... ✓ (1_H \otimes O_l) decays to $\Upsilon \pi$, $\chi_{\text{bJ}}\gamma$, ...

$Z_b \rightarrow \chi_{bJ} \gamma$

•

 \checkmark This ratio is testable with experiment

•

Decays of $Z_b \rightarrow \Upsilon(nS)\pi$

as hadronic molecules

<u>S. Ohkoda</u>, Y. Yamaguchi, S. Yasui, K. Sudoh, and A. Hosaka, in preparation.

Branching fractions of Zb^(')

Channel	\mathscr{B} of $Z_b(10610), \%$	\mathscr{B} of $Z_b(10650), \%$
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	2.15 ± 0.56	14.8 ± 6.22
$B^+B^{*0} + B^0B^{*+}$	86.0 ± 3.6	_
$B^{*+}B^{*0}$	_	73.4 ± 7.0

 \checkmark The decay ratios seems not to be reflected on the difference of phase space.

 $\vec{q}_{\Upsilon(2S)}/\vec{q}_{\Upsilon(1S)} \sim 0.55$ $\vec{q}_{\Upsilon(3S)}/\vec{q}_{\Upsilon(2S)} \sim 0.42$

Diagrams for $Z_{b}^{(\prime)+} \rightarrow \Upsilon(nS)\pi^{+}$

 \checkmark Assuming that $Z_{\rm b}{}^{({}^{\rm \prime}{\rm)}}$ is hadronic molecule.

$$|Z_b\rangle = \frac{1}{\sqrt{2}} |B\bar{B}^* - B^*\bar{B}\rangle , |Z'_b\rangle = |B^*\bar{B}^*\rangle .$$

✓ Feynman diagrams are described with hadronic loops

Effective Lagrangians

✓ Lagrangians for ZB \overline{B}^* and ZB* \overline{B}^* ✓ Couplings are determined by Z_b → B \overline{B}^* and Z_b → B* \overline{B}^*

$$\mathcal{L}_{ZBB^*} = g_{ZBB^*} M_z Z^\mu (B\bar{B}^*_\mu + B^*_\mu \bar{B}),$$

$$\mathcal{L}_{Z'B^*B^*} = g_{Z'B^*B^*} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} Z'_{\nu} B^*_{\alpha} \bar{B}^*_{\beta} ,$$

✓ Lagrangian for pion and B(B*) meson ✓ Coupling g is determined by $D^* \rightarrow D\pi$

$$\mathcal{L}_{I} = ig \operatorname{Tr}[H_{b} \gamma_{\mu} \gamma_{5} A_{ba}^{\mu} H_{a}] \quad g = 0.59$$
$$H_{a} = \left(\frac{1+\psi}{2}\right) [M_{a}^{\mu} \gamma_{\mu} - M_{a} \gamma_{5}]$$

Couplings of Υ and B(B*)

P. Colangelo, et al, PRD64 054023 (2004)

$$\mathcal{L}_2 = \frac{g_2}{2} \operatorname{Tr}[R^{(Q_1 Q_2)} H_{2a} \overset{\leftrightarrow}{\partial} H_{1a}] + \operatorname{H.c.} + (Q_1 \leftrightarrow Q_2)$$

$$R^{(\mathcal{Q}_1\mathcal{Q}_2)} = \left(\frac{1+\psi}{2}\right) [L^{\mu}\gamma_{\mu} - L\gamma_5] \left(\frac{1-\psi}{2}\right).$$

 \checkmark Vector meson dominance determines the couplings

Diagrams for $Z_b'^+ \rightarrow \Upsilon(nS)\pi^+$

 $\mathcal{M}_{total} = 2\mathcal{M}_{B^*B^*}^{(B)} + 2\mathcal{M}_{B^*B^*}^{(B^*)}$

Diagrams for Z_b '+ $\rightarrow \Upsilon(nS)\pi^+$

✓ The explicit transition amplitude is given as follows

$$i\mathcal{M}_{B^*B^*}^{(B)} = (i)^3 \int \frac{d^4q}{(2\pi)^4} [ig_{z'}\epsilon_{\mu\nu\alpha\beta}P^{\mu}\epsilon_{z}^{\nu}\epsilon_{B^{*+}}^{\alpha}\epsilon_{\bar{B}^{*0}}^{\beta}] \\ \times [ig_{B^*B^*\Upsilon(nS)}\epsilon_{\delta\tau\theta\phi}v^{\delta}\epsilon_{v}^{\tau}\epsilon_{B^{*+}}^{\alpha}(2q-P+k)^{\phi}][g_{BB^*\pi}(\epsilon_{\bar{B}^{*0}}\cdot k)] \\ \times \frac{1}{(q)^2 - m_{B^*}^2} \frac{1}{(P-q)^2 - m_{B^*}^2} \frac{1}{(q-P+k)^2 - m_{B}^2} \mathcal{F}(q^2,k^2)$$

 \checkmark We introduce the form factor

$$\mathcal{F}(q^2, k^2) = \frac{\Lambda_Z^2}{q^2 + \Lambda_Z^2} \frac{\Lambda^2}{k^2 + \Lambda^2} \frac{\Lambda^2}{k^2 + \Lambda^2}$$

Numerical results

\checkmark Partial decay widths of Z_b'(10650)

	No Cutoff Λ	$\Lambda_Z = 1000, \Lambda = 600$	exp
$\Upsilon(1S)\pi^+$	71.3	0.044	0.028
$\Upsilon(2S)\pi^+$	17.6	0.31	0.28
$\Upsilon(3S)\pi^+$	0.86	0.18	0.19

\checkmark Partial decay widths of Z_b(10610)

	No Cutoff Λ	$\Lambda_Z = 1100, \Lambda = 600$	\exp
$\Upsilon(1S)\pi^+$	95.5	0.081	0.059
$\Upsilon(2S)\pi^+$	19.8	0.51	0.806
$\Upsilon(3S)\pi^+$	0.485	0.14	0.396

 \checkmark The momentum of final states mainly control the results.

✓ The form factor plays significant roll.

Summary

- We study the decay properties of Z_b as hadronic molecules.
- The spin structure of Z_b implies that $Z_b \rightarrow h_b \pi$
- Analyzing the spin structure gives useful information of the decay properties.
- We analyze the decays of $Z_b \rightarrow \Upsilon \pi$ with the intermediate meson loops and the form factor.