Exotic dibaryons with a heavy antiquark

Yasuhiro Yamaguchi¹

in collaboration with

S. Ohkoda¹, S. Yasui², Y. Kikuchi¹, A. Hosaka¹

RCNP Osaka University¹, KEK²

ミニ滞在型研究検討会 「チャームバリオンの構造と生成」

9/10-13 2013, KEK Tokai Campus

Introduction

- π exchange potential between heavy meson and nucleon.
- Results of $\overline{D}N$ and BN— Exotic states ($\overline{Q}q + qqq$)
- Results of DNN and BNN
- Summary

2-body system

3-body system

э

Exotic hadrons in the heavy quark region Introduction

- New particles (XYZ) with heavy quarks: Belle, LHC...
- These states cannot be explained by a simple quark model (Baryons qqq, Meson $q\bar{q}$). \rightarrow Exotic hadrons

Exotic hadrons in the heavy quark region Introduction

- New particles (XYZ) with heavy quarks: Belle, LHC...
- These states cannot be explained by a simple quark model (Baryons qqq, Meson $q\bar{q}$). \rightarrow Exotic hadrons

 Hadron molecules: Loosely bound state or resonance of two hadrons. Candidates? X(3872), Z_b...

S.K.Choi et al., PRL91 (2003) 262001, A.Bondar, et al., PRL108(2012)122001

Hadronic molecule and π exchange potential $_{\rm Introduction}$

 What is a driving force to form a molecules?: π exchange potential

In the heavy quark region,

Hadronic molecule and π exchange potential $_{\rm Introduction}$

 What is a driving force to form a molecules?: π exchange potential

- In the heavy quark region, π exchange potential is enhanced by the Heavy Quark Symmetry.
- Meson-Meson molecules: The importance of the tensor force in "Deuson" (= Deuteron-like two mesons bound states)
 N. A. Tornqvist,Z. Phys. C 61 (1994) 525
- Meson-Nucleon molecules, $\overline{D}N$ and BN.
 - T. D. Cohen, et al., PRD72(2005)074010, S. Yasui and K. Sudoh, PRD80(2009)034008

Heavy meson and Heavy Quark Symmetry Introduction

Heavy Quark Symmetry N.Isgur, M.B.Wise, PRL66,1130

- This symmetry appears in the heavy quark mass limit $(m_Q
 ightarrow \infty).$
- Spin-spin interaction $\longrightarrow 0$

Indeed, mass splitting between P and P^* is small.

 $\left\{ \begin{array}{l} m_{B^*}-m_B\sim 45\,\text{MeV}\\ m_{D^*}-m_D\sim 140\,\text{MeV}\\ m_{K^*}-m_K\sim 400\,\text{MeV} \end{array} \right.$

- The π exchange potential appears through **PP**^{*} π and **P**^{*}**P**^{*} π vertices. (*PP* π is forbidden.)
- Thanks to the degeneracy, π exchange potential is enhanced.

π exchange potential: Analogy with Deuteron $_{\rm Introduction}$

• π exchange(**Tensor force**) generates a **strong attraction**.

• Deuteron: ${}^{3}S_{1} - {}^{3}D_{1}$ mixing

• The tensor force comes from $\underline{\overline{D}N} - \underline{\overline{D}^*N}$ and $\underline{\overline{D}^*N} - \underline{\overline{D}^*N}$ mixings.

Purpose

• Searching for exotic baryons formed by Heavy meson-Nucleon with π exchange potential.

- We study bound and resonant states by solving the coupled-channel Schrödinger equations for PN and P*N channels.
- $P = \overline{D}(\overline{c}q), B(\overline{b}q) \rightarrow$ Genuine exotic states! $\Leftrightarrow \underline{KN} \text{ and } \underline{KNN} \text{ don't exist.} (KN \text{ interaction is repulsive.})$

Interactions: π , ρ and ω exchange potentials

Heavy-light chiral lagrangian R.Casalbuoni *et al.* PhysRept.281,145(1997) • $\mathcal{L}_{\pi H H} = i g_{\pi} \operatorname{Tr} \left[H_b \gamma_{\mu} \gamma_5 \mathcal{A}^{\mu}_{ba} \bar{H}_a \right]$

• $\mathcal{L}_{\nu HH} = -i\beta \operatorname{Tr} \left[H_b v^{\mu} (\rho_{\mu})_{ba} \bar{H}_a \right] + i\lambda \operatorname{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu} (\rho)_{ba} \bar{H}_a \right]$

Interactions: π , ρ and ω exchange potentials

Form factor and Cut-off parameter Λ

• Form factor F with cutoff Λ at each vertex

$$F_{\alpha}(\Lambda, \vec{q}\,) = rac{\Lambda^2 - m_{lpha}^2}{\Lambda^2 + |\vec{q}\,|^2} \quad (lpha = \pi,
ho, \, \omega)$$

- \bigcirc Λ_N is fixed to reproduce the properties of Deuteron. (NN system with Bonn potential)
- $P^{(*)}$ **(2)** Λ_P is determined by the ratios of radii of *P* and *N*. We assume $\Lambda_P / \Lambda_N = r_N / r_P$.

$$\begin{cases} \Lambda_D = 1.35\Lambda_N & & \Lambda_P \bigcirc ----- & & & \\ \Lambda_B = 1.29\Lambda_N & & & & & \\ \text{S.Yasui and K.Sudoh PRD80,034008} & & & & P^{(*)} & & N \end{cases}$$

Potential	Λ_N [MeV]	$\Lambda_D \; [MeV]$	Λ_B [MeV]
π	830	1121	1070
π,ρ,ω	846	1142	1091

Cut-off parameters are also fixed a capacity and a

Y. Yamaguchi(RCNP) ミニ滞在型研究検討会@KEK 東海キャンパス Ν

Ν

P^(*)N Interaction

• π exchange potential between $P^{(*)}(=ar{D}^{(*)},B^{(*)})$ and N

$$V_{PN-P^*N} = -\frac{gg_{\pi NN}}{\sqrt{2}m_N f_\pi} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_\varepsilon T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
$$V_{P^*N-P^*N} = \frac{gg_{\pi NN}}{\sqrt{2}m_N f_\pi} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$

S.Yasui and K.Sudoh PRD80,034008

g

Results of PN states (2-body)

 $ar{D}N, BN$ Exotic states $(ar{Q}q + qqq)$

Bound state and Resonance

• • = • • = •

Results of $\overline{D}N$ and BN with I = 0 ($\overline{Q}q + qqq$ state) $\overline{D}N$ and BN states

• Bound and Resonant states are found near the thresholds.

• BN is more bound than $\overline{D}N$ due to heavier μ and small Δm_{BB^*} .

The bound state in $I(J^P) = 0(1/2^-)$ DN and BN states

- Expectation values of meson exchange potentials
- $\bar{D}^{(*)}N(1/2^{-})$: $\bar{D}N({}^{2}S_{1/2})$, $\bar{D}^{*}N({}^{2}S_{1/2}, {}^{4}D_{1/2})$

The bound state of $ar{D} {\sf N}(1/2^-)$			
Components	V_{π}	$V_{ ho}$	V_{ω}
$\langle \bar{D}N(S) V \bar{D}N(S)$	0.0	-2.7	3.6
$\langle \bar{D}N(S) V \bar{D}^*N(S)$	-2.4	-5.2	1.0
$\langle \bar{D}N(S) V \bar{D}^*N(D)$	-35.2	3.4	-0.6
$\langle \bar{D}^*N(S) V \bar{D}^*N(S)$	0.4	0.7	0.1
$\langle \bar{D}^*N(S) V \bar{D}^*N(D)$	-5.0	0.6	-0.1
$\langle ar{D}^*N(D) V ar{D}^*N(D)$	3.7	-0.9	0.4
Total	-38.6	-4.4	4.4

- The tensor force of π exchange potential generates a strong attraction. Especially, $\overline{D}N \overline{D}^*N$ mixing is important.
- ρ, ω exchanges play a minor role due to the cancellation of them.

The bound state in $I(J^P) = 0(1/2^-)$ DN and BN states

- Expectation values of meson exchange potentials $\overline{D}(x) M(x/x) = \overline{D} M(x/x) \overline{D} M(x/x)$
- $\bar{D}^{(*)}N(1/2^{-})$: $\bar{D}N({}^{2}S_{1/2})$, $\bar{D}^{*}N({}^{2}S_{1/2}, {}^{4}D_{1/2})$

The bound state of $ar{D} {\sf N}(1/2^-)$			
Components	V_{π}	$V_{ ho}$	V_{ω}
$\langle \bar{D}N(S) V \bar{D}N(S)$	0.0	-2.7	3.6
$\langle \bar{D}N(S) V \bar{D}^*N(S)$	-2.4	-5.2	1.0
$\langle \bar{D}N(S) V \bar{D}^*N(D)$	-35.2	3.4	-0.6
$\langle ar{D}^*N(S) V ar{D}^*N(S)$	0.4	0.7	0.1
$\langle ar{D}^*N(S) V ar{D}^*N(D)$	-5.0	0.6	-0.1
$\langle ar{D}^*N(D) V ar{D}^*N(D)$	3.7	-0.9	0.4
Total	-38.6	-4.4	4.4

- The tensor force of π exchange potential generates a strong attraction. Especially, $\overline{D}N \overline{D}^*N$ mixing is important.
- ρ, ω exchanges play a minor role due to the cancellation of them.

PN molecule (2-body system)

▷ Tensor force plays an important role.

э

(日本) (日本) (日本)

PN molecule (2-body system)

> Tensor force plays an important role.

P nuclei (Few body or many body)?

- There have been several works for D(B) meson in nuclear matter and in ¹²C, ²⁰⁸Pb.
 C. Garcia-Recio, *et al.*, Phys. Rev. C **85** (2012) 025203.
 S. Yasui and K. Sudoh, Phys. Rev. C **87** (2013) 015202.
- However, there is no study for few-body
 D(B) nuclei in the literature so far.

Tensor force yields a bound state of $\overline{D}NN$ and/or BNN?

Three-body system: $\overline{D}^{(*)}NN$ and $B^{(*)}NN$ (Exotic states) $\overline{D}NN$ and BNN

• Exotic dibaryon states $(P = \overline{Q}q)$. No $q\overline{q}$ annihilation!

$$J^P = 0^-, 1^-, I = 1/2$$

Method

• We study bound and resonant states.

Three-body system: $\overline{D}^{(*)}NN$ and $B^{(*)}NN$ (Exotic states) $\overline{D}NN$ and BNN

• Exotic dibaryon states ($P = \bar{Q}q$). No $q\bar{q}$ annihilation!

Method

- We study bound and resonant states.
- Wave functions are expressed by the Gaussian expansion method. E. Hiyama, *et al.*, Prog.Part.Nucl.Phys.51(2003)223
- Resonances \rightarrow Complex scaling method S.Aoyama, et.al., PTP116,1(2006)
- Interactions
 - $P^{(*)}N$ int. : π exchange potential ($\rho, \omega \rightarrow$ Future Work)
 - NN int.: AV8' potential B. S. Pudliner, et.al. , Phys. Rev. C56(1997)1720

Results of PNN states (3-body)

*D*NN, BNN Exotic dibaryon states

Bound state and Resonance

- A - E - N

• Bound states for $J^P = 0^-$ and Resonances for $J^P = 1^-$ are found! Y.Y., S. Yasui, and A. Hosaka, in preparation

Bound states for J^P = 0⁻ and Resonances for J^P = 1⁻ are found!
 Y.Y., S. Yasui, and A. Hosaka, in preparation

• $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.

直 と く ヨ と く ヨ と

Bound states for J^P = 0⁻ and Resonances for J^P = 1⁻ are found!
 Y.Y., S. Yasui, and A. Hosaka, in preparation

- $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.
- D
 *D*NN(1⁻) locates below D
 ^{*} + NN(1⁺) and D
 N(3/2⁻) + N thresholds.

• **Bound states** for $J^P = 0^-$ and **Resonances** for $J^P = 1^-$ are found! Y.Y., S. Yasui, and A. Hosaka, in preparation Unit: MeV $ar{D}^*NN$ 111.2 - i9.3 B^*NN 140 MeV 46 MeV 6.8 - i0.2 $\bar{D}NN$ BNNU -5.2-26.2 0^{-}

• $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.

- D
 *D*NN(1⁻) locates below D
 ^{*} + NN(1⁺) and D
 N(3/2⁻) + N thresholds.
- $BNN > ar{D}NN$ due to large reduced mass and small Δm_{BB^*} .

• Energy expectation values

The bound state of $ar{D}NN(0^-)$			
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N\!-\!\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N\!-\!\bar{D}^*N} angle$	$\langle V_{NN} \rangle$
Central	-2.3	-0.1	-9.5
Tensor	-47.1	0.7	-0.2
LS			-0.03

Y.Y, S. Yasui, and A. Hosaka, in preparation

Results of $\overline{D}^{(*)}NN$ and $B^{(*)}NN$ with I = 1/2 (Exotic) $\overline{D}NN$ and BNN

• Energy expectation values

The bound state of $ar{D} NN(0^-)$			
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N\!-\!\bar{D}^*N} angle$	$\langle V_{NN} \rangle$
Central	-2.3	-0.1	-9.5
Tensor	-47.1	0.7	-0.2
LS			-0.03

Y.Y, S. Yasui, and A. Hosaka, in preparation

 Tensor force of D

 <u>D</u>*N mixing component generates the strong attraction.

• Energy expectation values

The bound state of $ar{D} NN(0^-)$			
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N\!-\!\bar{D}^*N} angle$	$\langle V_{ar{D}^*N\!-\!ar{D}^*N} angle$	$\langle V_{NN} \rangle$
Central	-2.3	-0.1	-9.5
Tensor	-47.1	0.7	-0.2
LS			-0.03

Y.Y, S. Yasui, and A. Hosaka, in preparation

- Tensor force of DN D*N mixing component generates the strong attraction.
- For V_{NN} , central force is stronger than tensor force. $\Rightarrow NN(0^+)$ subsystem dominates in the bound state, while $NN(1^+)$ is minor.

• The bound states of $J^P = 0^-$ vanish.

 $\Rightarrow PN - P^*N$ mixing components are very important!

Results of P_QNN states (m_Q $\rightarrow \infty$)

$$P_Q^{(*)}NN \ (m_{P_Q^*} - m_{P_Q} = 0)$$

Bound state and Resonance

Results of $P_Q^{(*)}NN$ with $m_Q \rightarrow \infty$ (Exotic)

• Bound states for $J^P = 0^-$ and 1^- are found.

伺 と く ヨ と く ヨ と

Results of $P_Q^{(*)}NN$ with $m_Q \rightarrow \infty$ (Exotic)

• Bound states for $J^P = 0^-$ and 1^- are found.

Results of $P_{Q}^{(*)}NN$ with $m_{Q} \rightarrow \infty$ (Exotic)

• Bound states for $J^P = 0^-$ and 1^- are found.

We also find the degenerate state for $P_Q^{(*)}N$ with $E_b = -34.1$ MeV.

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph]

Spin degeneracy

• In the heavy quark limit $(m_Q \rightarrow \infty)$, the heavy quark spin s_Q is separated from the total spin of the brown muck j_I .

$$J = s_Q + j_I$$

- J: Total angular momentum, s_Q : Heavy quark spin, j_I : Brown muck spin
- The spin degenerate states appear in a system with single heavy quark.
 - W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)
 - S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph]

• Doublet $J = j_l - 1/2, j_l + 1/2 (j_l \neq 0)$ • Singlet $J = 1/2 (j_l = 0)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Light spin-complex: $[qNN]_{j_l}$

Spin degeneracy in $P^{(*)}N$ states $(m_Q \rightarrow \infty)$

PN basis

 $3/2^-:|\textit{PN}(^2D_{3/2})\rangle,|\textit{P}^*\textit{N}(^4S_{3/2})\rangle,|\textit{P}^*\textit{N}(^4D_{3/2})\rangle,|\textit{P}^*\textit{N}(^2D_{3/2})\rangle$

$$H_{3/2^{-}} = \begin{pmatrix} K_2 & \sqrt{3}T & -\sqrt{3}T & \sqrt{3}C \\ \sqrt{3}T & K_0 + C & 2T & T \\ -\sqrt{3}T & 2T & K_2 + C & -T \\ \sqrt{3}C & T & -T & K_2 - 2C \end{pmatrix}$$

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph]

Spin degeneracy in $P^{(*)}N$ states $(m_Q \rightarrow \infty)$

Spin-complex basis

 $1/2^{-}:|[\textit{Nq}({}^{1}\textit{S}_{0})]\bar{\textit{Q}}\rangle_{1/2},|[\textit{Nq}({}^{3}\textit{S}_{1})]\bar{\textit{Q}}\rangle_{1/2},|[\textit{Nq}({}^{3}\textit{D}_{1})]\bar{\textit{Q}}\rangle_{1/2}$

$$H_{1/2^{-}} = \begin{pmatrix} K_0 & \sqrt{3}C & -\sqrt{6}T \\ \sqrt{3}C & K_0 - 2C & -\sqrt{2}T \\ -\sqrt{6}T & -\sqrt{2}T & K_2 + C - 2T \end{pmatrix}$$

 $3/2^{-}:|[\textit{Nq}(^{3}\textit{S}_{1})]\bar{\textit{Q}}\rangle_{3/2},|[\textit{Nq}(^{3}\textit{D}_{1})]\bar{\textit{Q}}\rangle_{3/2},|[\textit{Nq}(^{1}\textit{D}_{2})]\bar{\textit{Q}}\rangle_{3/2},|[\textit{Nq}(^{3}\textit{D}_{2})]\bar{\textit{Q}}\rangle_{3/2}$

$$H_{3/2^{-}} = \begin{pmatrix} K_2 & \sqrt{3}T & -\sqrt{3}T & \sqrt{3}C \\ \sqrt{3}T & K_0 + C & 2T & T \\ -\sqrt{3}T & 2T & K_2 + C & -T \\ \sqrt{3}C & T & -T & K_2 - 2C \end{pmatrix}$$

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph]

Spin degeneracy in $P^{(*)}N$ states (m_Q $\rightarrow \infty$)

Spin-complex basis

 $1/2^{-}: |[\textit{Nq}({}^{1}\textit{S}_{0})]\bar{\textit{Q}}\rangle_{1/2}, |[\textit{Nq}({}^{3}\textit{S}_{1})]\bar{\textit{Q}}\rangle_{1/2}, |[\textit{Nq}({}^{3}\textit{D}_{1})]\bar{\textit{Q}}\rangle_{1/2}$

$$H_{1/2^{-}}^{SC} = \begin{pmatrix} K_0 - 3C & 0 & 0 \\ 0 & K_0 + C & -2\sqrt{2}T \\ 0 & -2\sqrt{2}T & K_2 + C - 2T \end{pmatrix}$$

 $3/2^{-}:|[Nq(^{3}S_{1})]\bar{Q}\rangle_{3/2},|[Nq(^{3}D_{1})]\bar{Q}\rangle_{3/2},|[Nq(^{1}D_{2})]\bar{Q}\rangle_{3/2},|[Nq(^{3}D_{2})]\bar{Q}\rangle_{3/2}$

$$H_{3/2^{-}}^{\rm SC} = \begin{pmatrix} \begin{array}{c|c} K_0 + C & -2\sqrt{2}T & 0 & 0 \\ -2\sqrt{2}T & K_2 + C - 2T & 0 & 0 \\ \hline 0 & 0 & K_2 - 3C & 0 \\ 0 & 0 & 0 & K_2 + C + 2T \\ \end{array} \end{pmatrix}$$

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph]

Spin degeneracy in $P^{(*)}N$ states $(m_0 \rightarrow \infty)$

Spin-complex basis

 $1/2^{-}$: $|[Nq({}^{1}S_{0})]\bar{Q}\rangle_{1/2}, |[Nq({}^{3}S_{1})]\bar{Q}\rangle_{1/2}, |[Nq({}^{3}D_{1})]\bar{Q}\rangle_{1/2}$

$$H_{1/2^{-}}^{\rm SC} = \begin{pmatrix} \begin{array}{c|c} K_0 - 3C & 0 & 0 \\ \hline 0 & K_0 + C & -2\sqrt{2}T \\ 0 & -2\sqrt{2}T & K_2 + C - 2T \\ \end{array} \end{pmatrix}$$

 $3/2^{-}$: $|[Nq({}^{3}S_{1})]\bar{Q}\rangle_{3/2}, |[Nq({}^{3}D_{1})]\bar{Q}\rangle_{3/2}, |[Nq({}^{1}D_{2})]\bar{Q}\rangle_{3/2}, |[Nq({}^{3}D_{2})]\bar{Q}\rangle_{3/2}$

$$H_{3/2^{-}}^{\rm SC} = \begin{pmatrix} \begin{array}{c|c} \mathbf{K}_0 + \mathbf{C} & -2\sqrt{2}\mathbf{T} & 0 & 0 \\ \hline -2\sqrt{2}\mathbf{T} & \mathbf{K}_2 + \mathbf{C} - 2\mathbf{T} & 0 & 0 \\ \hline 0 & 0 & \mathbf{K}_2 - 3C & 0 \\ \hline 0 & 0 & 0 & \mathbf{K}_2 + C + 2T \\ \end{array} \end{pmatrix}$$

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, arXiv:1304.5293 [hep-ph] • P^(*)N (2-body): $E_b = -34.1 \text{ MeV for } J^P = 1/2^- \text{ and } 3/2^- (\text{with } j_L^P = 1^+).$

Spin degeneracy in $P^{(*)}NN$ states (m_Q $\rightarrow \infty$)

• Spin singlet state doesn't appear in this case, because \mathbf{j}_{l} cannot be zero. $P^{(*)}N, P^{(*)}NNN, P^{(*)}NNNNN...$ (Odd N's) $j_{l} = 0$ OK $P^{(*)}NN, P^{(*)}NNNN, P^{(*)}NNNNN...$ (Even N's) $j_{l} \neq 0$

Summary

- We have investigated exotic baryons formed by $P^{(*)}N$ and $P^{(*)}NN$ with respecting the Heavy Quark Symmetry.
- The π exchange potential was employed between a heavy meson $P^{(*)}$ and a nucleon N.
- We have found many bound states and resonances in P^(*)N (2-body system).
- For the $\overline{D}NN$ and BNN states (3-body system), we have found the bound states with $J^P = 0^-$ and resonances with $J^P = 1^-$ for I = 1/2.
- Tensor force of PN P*N mixing component plays a crucial role to produce a strong attraction.
- The degenerate states of $P_Q^{(*)}NN$ with $J^P = 0^-$ and 1^- , and $j_l^P = 1/2^+$ is found in the heavy quark limit.

Back up

< ≣⇒

2

æ

• Central force C(r) and Tensor force T(r)

$$C(r) = \int \frac{d^3q}{(2\pi)^3} \frac{m_{\pi}^2}{\vec{q}\,^2 + m_{\pi}^2} e^{i\vec{q}\cdot\vec{r}} F(\Lambda_P, \vec{q}) F(\Lambda_N, \vec{q})$$

$$S_T(\hat{r}) T(r) = \int \frac{d^3q}{(2\pi)^3} \frac{-\vec{q}\,^2}{\vec{q}\,^2 + m_{\pi}^2} S_T(\hat{q}) e^{i\vec{q}\cdot\vec{r}} F(\Lambda_P, \vec{q}) F(\Lambda_N, \vec{q})$$

$$F(\Lambda, \vec{q}) = \frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 + \vec{q}\,^2}$$

э

高 と く ヨ と く ヨ と

Various coupled channels for a given J^P

We investigate $J^P = 1/2^{\pm}, \dots, 7/2^{\pm}$ states with I = 0, 1 in full channel couplings of *PN* and P^*N .

JP	channels	# of channels
$1/2^{-}$	$PN(^{2}S_{1/2}) P^{*}N(^{2}S_{1/2}, {}^{4}D_{1/2})$	3
$1/2^+$	$PN(^{2}P_{1/2}) P^{*}N(^{2}P_{1/2}, {}^{4}P_{1/2})$	3
$3/2^{-}$	$PN(^{2}D_{3/2}) P^{*}N(^{4}S_{3/2}, {}^{2}D_{3/2}, {}^{4}D_{3/2})$	4
$3/2^{+}$	$PN(^{2}P_{3/2}) P^{*}N(^{2}P_{3/2}, {}^{4}P_{3/2}, {}^{4}F_{3/2})$	4
$5/2^{-}$	$PN(^{2}D_{5/2}) P^{*}N(^{2}D_{5/2}, {}^{4}D_{5/2}, {}^{4}G_{5/2})$	4
$5/2^{+}$	$PN({}^{2}F_{5/2}) P^{*}N({}^{4}P_{5/2}, {}^{2}F_{5/2}, {}^{4}F_{5/2})$	4
$7/2^{-}$	$PN({}^{2}G_{7/2}) P^{*}N({}^{4}D_{7/2}, {}^{2}G_{7/2}, {}^{4}G_{7/2})$	4
$7/2^{+}$	$PN({}^{2}F_{7/2}) P^{*}N({}^{2}F_{7/2}, {}^{4}F_{7/2}, {}^{4}H_{7/2})$	4

• **Higher L state** plays a crucial role to produce attraction through **the tensor force**.

(日本) (日本) (日本)

Results of DN and $\overline{B}N$ with I = 0 (Q $\overline{q} + qqq$ states) DN and $\overline{B}N$ states

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}, 7/2^{\pm}$$
 with $I = 0$

=: Resonance ($E_{\rm re} - i\Gamma/2$) Unit: MeV

Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, PRD87,074019 (2013)

- Both ρ and ω exchanges are attractive in DN ($\bar{B}N$). $\Rightarrow DN$ ($\bar{B}N$) states are more bound.
- Excited Λ_c 's and Λ_b 's? \Rightarrow But $\pi \Sigma_c (\pi \Sigma_b)$ is not considered.

Results of DN and $\overline{B}N$ with I = 0 (Q $\overline{q} + qqq$ states) DN and $\overline{B}N$ states

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}, 7/2^{\pm}$$
 with $I = 0$

Large L states: π exchange is important. $DN - D^*N$ dominance?

Method

Jacobi coordinate

• Wave function

$$\Phi_L^{(c)}(r_c, R_c) = \sum_{n_1, n_2, l_1, l_2} C\left[\phi_{n_1, l_1}^{(c)}(r_c)\psi_{n_2, l_2}^{(c)}(R_c)\right]_L$$

$$\phi_{n_1, l_1}(r) = \exp\left(-r^2/2b_n^2\right)\mathcal{Y}_{l_1}(\hat{r})$$

$$b_n = b_1 a^{n-1} (n = 1, \cdots, 10), b_1 = 0.3 \,\mathrm{fm}, b_{10} = 10.0 \,\mathrm{fm}$$

æ

★ E ► < E ►</p>

< 同 ▶