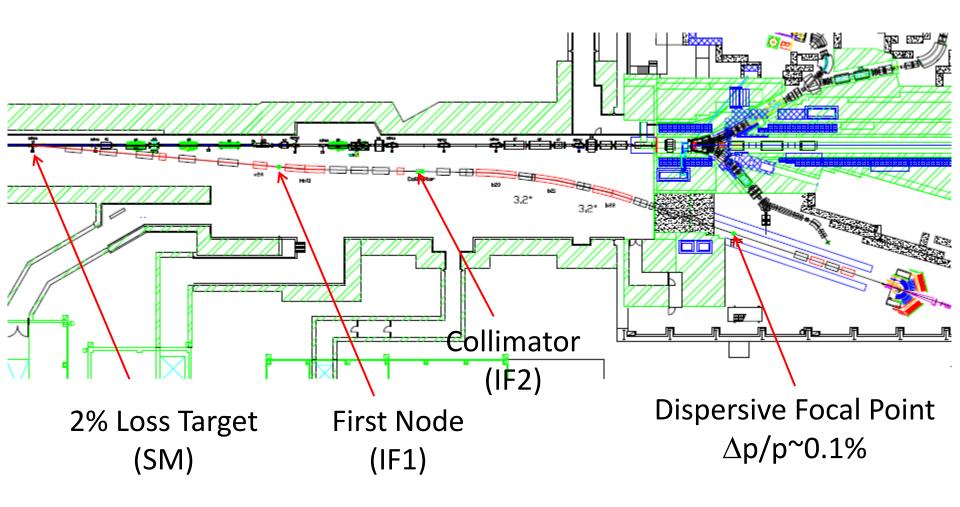
J-PARC高運動量・高精度 ビームライン計画

小沢 恭一郎(KEK·素核研) 野海博之(大阪大学RCNP)

このTalkの目的

J-PARCハドロンホールに新規ビームラインとして、高運動量・高精度ビームラインを建設

- そこで実現する物理実験を3月16•17日開催 予定のPACに提案することが必要。
 - 提案書の締切は、2月15日


- そのための議論を、ここから始めたい。
 - このTalkで基本情報を提供する。

おおざっぱな物理のねらい

- Primary Beam Line (30GeV)
 - Chiral Symmetry in Nucleus (E16)
- Secondary Un-separated Beam (2-6 GeV/c)
 - Exotic Meson/baryon spectroscopy
 - Mesons in nucleus (E26, ...)
- Secondary Un-separated Beam (6-11 GeV/c)
 - Hidden Charm meson spectroscopy
 - Multi Fragmentation
- Secondary Un-separated Beam (11-15 GeV/c)
 - Charmed Baryon Spectroscopy
 - Charmed Baryon in Nucleus

高分解能化された高運動量ビームライン

~15GeV/cまでの2次粒子ビームライン(主に高強度パイオンビーム) チャーム量子を含むハドロン(とくに、バリオン)分光を開拓する 運動量分解能~0.1%を目指し、精密分光を実現する

ビームライン諸元(現計画)

Primary Beam

Energy: 30 GeV proton

- Intensity: 10^10

Event by Event beam measurements is difficult

Secondary Beam

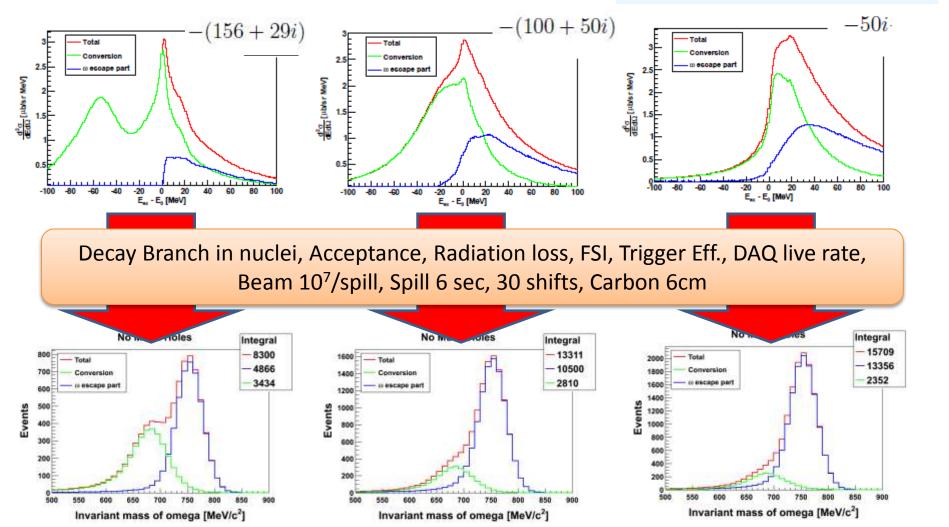
- Un-separated beam: mostly π
- Momentum Range: 2-15 GeV/c
- Beam momentum Resolution: 0.1 %
- Intensity: 10^7 (depends on momentum)
 - If you need more, we need to develop an extraction method.

考えられる実験の形

- Primary Beam
 - Measurements of products at Target
- Secondary Beam
 - Measurements of beam and projectile (0.1% resolution)
 - Measurements of products at Target
 - Neutral Particles
 - Charged Particles
 - Neutral and charged particles
 - Both measurements
- Target
 - Proton, deuteron
 - Nucleus targets

Task

- ・狙うべき物理の具体化
 - 出来るだけ具体的なリストを1月13日のPACで紹介
 - その中で、最初に行う実験群を具体化
- ・ 必要とされるビームの性能
 - Beam Energy
 - Beam Intensity -> Need Cross sections.
- 必要とされる実験装置の性能
 - Decay and/or Forward
 - Resolution, Acceptance
- ・ 提案書の作成
 - TotalでのResolution Yield の評価


進め方

- ・メールで
 - 興味を持って貰える人で、メールで議論し、最初のPhysics menuは作りたい。観測量も含め。
 - ・出来たら、1/10くらいまでに
- ・ 打合せ、研究会
 - -1月頭には、顔を合わせて議論を行い、的を絞り、 提案書に向けた役割分担などを確立させたい。
 - それまでに、だいたいのCross sectionを
 - -1月中に基本的な計算などは終わらせる。
- 書き物
 - 2月頭の2週間くらいで書き物にする。

E26の場合

Generation of ω : Assumed 3 different ω N-potentials Focus on low momentum part (p_{ω} < 100 MeV/c) All known effects are took into account.

H. Nagahiro et al, Calculation for 12 C(π^- , n) 11 B $_{\odot}$

