Chirally motivated in-medium KN amplitudes

Aleš Cieplý

Nuclear Physics Institute, Řež/Prague, Czechia

model formulated with J. Smejkal acknowledged collaboration with E. Friedman, A. Gal, D. Gazda, J. Mareš

Future Prospects of Hadron Physics, J-PARC, Feb 9, 2012

Outline

- Introduction
- Separable meson-baryon potentials
- Oata reproduction
- Free space and in-medium $\bar{K}N$ amplitudes
- \bullet K-nuclear optical potential
- Summary

```
A.C., J. Smejkal - Nucl. Phys. A (2012), arXiv:1112.0917
A.C., E. Friedman, A. Gal, D. Gazda, J. Mareš - Phys. Lett. B 702 (2011) 402,
Phys. Rev. C 84 (2011) 045206
```

Introduction

$\bar{K}N$ interaction

strongly interacting multichannel system with an s-wave resonance, the $\Lambda(1405)$, just below the K^-p threshold

$\downarrow \downarrow \downarrow$ \bar{K} -nucleus interaction

strongly attractive and absorptive, $V_{\mathrm{opt}}(
ho) \sim t_{\bar{K}N}(
ho) \,
ho$

- ? optical potential depth: phenomenology $V_{\rm opt}$ =(150-200) MeV chiral models $V_{\rm opt}$ =(50-60) MeV
- ? existence of sufficiently narrow K^- -nuclear bound states

kaon propagation in nuclear matter

heavy ion collisions

? kaon condensation, neutron star structure

Introduction

A modern theoretical treatment of $\bar{K}N$ interaction is based on an effective chiral Lagrangian (a concept introduced by Weinberg for the πN interaction)

- CHPT implements the QCD symmetries in it's nonperturbative regime
- ullet coupled channels techniques are used to deal with divergencies due to resonances in the strangeness S=-1 sector
- $\Lambda(1405)$ resonance generated dynamically; two I=0 poles
- the leading order Tomozawa-Weinberg interaction does surprisingly well but NLO terms are necessary to achieve a good qualitative reproduction of the low energy K^-p data
- new precise data on the 1s energy level characteristics in the kaonic hydrogen atom from SIDDHARTA experiment (plus the kaonic deuterium should follow soon)

OUR WORK: simultaneous description of the K-atomic and low energy K^-p data to fix model parameters, then the model is used to study meson-baryon resonances and in-medium properties of the $\bar{K}N$ system

the model describes interactions of the lightest meson and baryon octets:

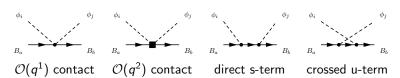
$$\phi = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}} \eta & \sqrt{2} \pi^+ & \sqrt{2} K^+ \\ \sqrt{2} \pi^- & -\pi^0 + \frac{1}{\sqrt{3}} \eta & \sqrt{2} K^0 \\ \sqrt{2} K^- & \sqrt{2} \bar{K}^0 & -\frac{2}{\sqrt{3}} \eta \end{pmatrix} \quad B = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda & n \\ \bar{\Xi}^- & \bar{\Xi}^0 & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$

6 coupled
$$Q=-1$$
 channels: $\pi^-\Lambda$ \sim 1250 MeV $\pi^-\Sigma^0$, $\pi^0\Sigma^ \sim$ 1330 MeV κ^-n \sim 1430 MeV $\eta\Sigma^ \sim$ 1700 MeV $\kappa^0= \sim$ 1800 MeV

We employ the effective chiral model of Kaiser, Siegel and Weise (1995) with the s-wave meson-baryon Lagrangian up to the second order, the heavy baryon formulation

Parameters: f_{π} , f_{K} , f_{η} - meson decay constants M_{0} - baryon octet mass $D \simeq 3/4$, $F \simeq 1/2$ - axial vector couplings, $g_{A} = F + D$ b_{0} , b_{D} , b_{F} , four d's - second order couplings

Schematic picture (taken from Borasoy, Nissler, Weise - 2005):



Problem: $\chi {\rm PT}$ is not applicable in the resonance region! Solution: effective separable potentials constructed to match the chiral amplitudes up to ${\cal O}(q^2)$

$$V_{ij}(k,k';\sqrt{s}) = \sqrt{\frac{1}{2\omega_i}\frac{M_i}{E_i}} g_i(k^2) \frac{C_{ij}(\sqrt{s})}{f_i f_j} g_j(k'^2) \sqrt{\frac{1}{2\omega_j}\frac{M_j}{E_j}}$$

Lippmann-Schwinger equation used to solve exactly the loop series

- kinematical factors guarantie a proper relativistic flux normalization with ω_i , M_i and E_i denoting the meson energy, the baryon mass and energy in the meson-baryon CMS
- coupling matrix C_{ij} determined by the chiral SU(3) symmetry, includes terms up to second order in the meson c.m. kinetic energies
- the formfactors $g_j(k) = 1/[1 + (k/\alpha_j)^2]$ account naturally for the off-shell effects with the inverse ranges α_j fitted to the low energy $\bar{K}N$ data
- our approach differs from the more popular on-shell scheme based on the Bethe-Salpeter equation and the unitarity relation for the inverse of the T-matrix

The resulting meson-baryon amplitudes are of the separable form:

$$F_{ij}(p, p'; \sqrt{s}) = -\frac{g_i(p)g_j(p')}{4\pi f_i f_j} \sqrt{\frac{M_i M_j}{s}} \left[(1 - C(\sqrt{s}) \cdot G(\sqrt{s}))^{-1} \cdot C(\sqrt{s}) \right]_{ij}$$

where the meson-baryon propagator $G(\sqrt{s})$ is diagonal in the channel indices i and j,

$$G_i(\sqrt{s}; \rho) = \frac{1}{f_i^2} \frac{M_i}{\sqrt{s}} \int_{\Omega_i(\rho)} \frac{d^3 \vec{p}}{(2\pi)^3} \frac{g_i^2(p)}{p_i^2 - p^2 - \Pi_i(\omega_i, E_i, \vec{p}; \rho) + i0}$$

- integration domain $\Omega_i(\rho)$ is limited by the Pauli principle in the $\bar{K}N$ channels
- \bullet Π_i represents a sum of meson and baryon self-energies in channel i
- $\Pi_{\bar{K}} \sim F_{\bar{K}N} \rho \; \Rightarrow \; {\sf selfconsistent} \; {\sf treatment} \; {\sf required}$

Threshold branching ratios:

$$\gamma = \frac{\sigma(K^-p \to \pi^+\Sigma^-)}{\sigma(K^-p \to \pi^-\Sigma^+)} = 2.36 \pm 0.04 \; ,$$

$$R_c = \frac{\sigma(K^-p \to \text{charged particles})}{\sigma(K^-p \to \text{all})} = 0.664 \pm 0.011 \; ,$$

$$R_n = \frac{\sigma(K^-p \to \pi^0\Lambda)}{\sigma(K^-p \to \text{all neutral states})} = 0.189 \pm 0.015 .$$

 K^-p cross sections to six different meson-baryon final states:

at the $p_{LAB}=110$ MeV for the K^-p , $\bar{K^0}n$, $\pi^+\Sigma^-$, $\pi^-\Sigma^+$ at the $p_{LAB}=200$ MeV for the above channels plus $\pi^0\Lambda$, $\pi^0\Sigma^0$

Kaonic hydrogen characteristics:

strong interaction energy shift	$\Delta E_N(1s)$
the decay width	$\Gamma(1s)$

two recent measurements at at DAΦNE in Frascati:

DEAR (2005)
$$\Delta E_N(1s) = 193 \pm 37(stat.) \pm 6(syst.) \text{ eV} \\ \Gamma(1s) = 249 \pm 111(stat.) \pm 39(syst.) \text{ eV} \\ \text{SIDDHARTA (2011)} \qquad \Delta E_N(1s) = 283 \pm 36(stat.) \pm 6(syst.) \text{ eV} \\ \Gamma(1s) = 541 \pm 89(stat.) \pm 22(syst.) \text{ eV} \\ \end{array}$$

our approach - direct numerical solution of the K^-p bound state problem, no Deser-like relation to the K^-p scattering length

Fit to 15 experimental data:

3 branching ratios, 2 kaonic hydrogen characteristics, 10 cross sections

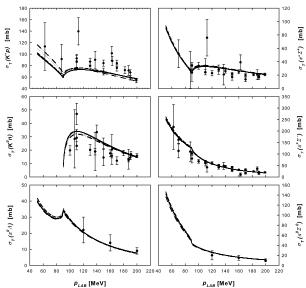
- TW1 only the leading order (LO) Tomozawa-Weinberg interaction, two parameters: $\alpha_i = \alpha_{TW} = 701$ MeV, $f_i = f_{TW} = 113$ MeV
- NLO30 LO+NLO interactions, couplings f_i fixed at physical values $f_\pi=92.4$ MeV, $f_K=110.0$ MeV and $f_\eta=118.8$ MeV, inverse ranges of channels closed at the $\bar{K}N$ threshold set to $\alpha_{\eta\Lambda}=\alpha_{\eta\Sigma^0}=\alpha_{K\Xi}=700$ MeV; fitted 3 inverse ranges and 4 NLO d-couplings
 - CS30 LO+NLO model taken from our previous work, included DEAR data instead of SIDDHARTA

inverse ranges (in MeV) and d-couplings (in GeV⁻¹):

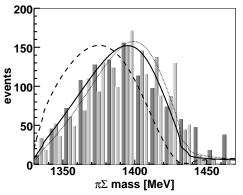
model	$\alpha_{\pi \Lambda}$	$\alpha_{\pi\Sigma}$	$lpha_{ar{ extsf{K}} extsf{N}}$	d_0	d_D	d_F	d_1
CS30	291	601	639	-0.450	0.026	-0.601	0.235
NLO30	297	491	700	-0.812	0.288	-0.737	-0.016

 K^-p threshold data calculated in several LO and LO+NLO coupled-channel chiral models.

model	ΔE_{1s}	Γ_{1s}	γ	R_c	R_n	$z_1(I=0)$	$z_2(I=0)$
TW1	323	659	2.36	0.636	0.183	(1371, -54)	(1433, -25)
JOR	275*	586*	2.30	0.618	0.257	(1389, -64)	(1427, -17)
IHW	373*	495*	2.36	0.66	0.20	(1384, -90)	(1422, -16)
NLO30	310	607	2.37	0.660	0.191	(1355, -86)	(1418, -44)
CS30	260	692	2.37	0.655	0.188	(1398, -51)	(1441, -76)
BNW	236*	580*	2.35	0.653	0.194	(1408, -37)	(1449, -106)
IHW	306*	591*	2.37	0.66	0.19	(1381, -81)	(1424, -26)
exp.	283	541	2.36	0.664	0.189	_	_
error (\pm)	42	111	0.04	0.011	0.015	_	_



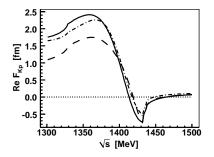
 $\pi\Sigma$ mass distribution: comparison with results taken from three "compatible" experiments:

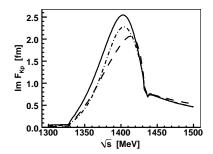


$$dN_{\pi\Sigma}/dM \sim \left|T_{\pi\Sigma,\pi\Sigma}(I=0) + r_{KN/\pi\Sigma} T_{\pi\Sigma,\bar{K}N}(I=0)\right|^2 p_{\pi\Sigma}$$

Free space and in-medium $\bar{K}N$ amplitudes

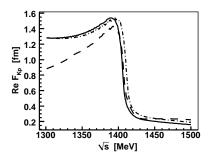
Energy dependence of the real (left panel) and imaginary (right panel) parts of the elastic K^-p amplitude in the free space. Dashed curves: TW1 model, dot-dashed: CS30 model, solid curves: NLO30 model.

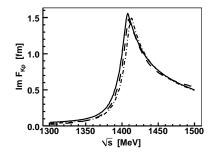




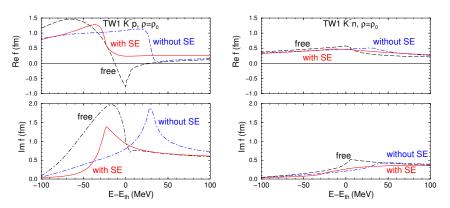
Free space and in-medium $\bar{K}N$ amplitudes

Energy dependence of the real (left panel) and imaginary (right panel) parts of the elastic K^-p amplitude in nuclear medium at the nuclear density $\rho=\rho_0$. Dashed curves: TW1 model, dot-dashed: CS30 model, solid curves: NLO30 model.



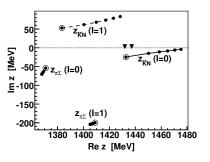


Free space and in-medium $\bar{K}N$ amplitudes



Energy dependence of the c.m. reduced amplitudes f_{K^-p} (left panels) and f_{K^-n} (right panels) in our TW1 model. The upper and lower panels refer to the real and imaginary parts of the $\bar{K}N$ amplitudes, respectively. Dashed curves: free space, dot-dashed: Pauli blocked amplitude (without SE) at $\rho=\rho_0$, solid curves: including meson and baryon self energies (with SE) at $\rho=\rho_0$.

In-medium pole movements



upper half (above real axis):

[+,-] Riemann sheet (the third RS), no quasibound interpretation of the poles

lower half (below real axis):

[-,+] Riemann sheet (the second RS) accessible from the physical region by crossing the real energy axis in between the $\pi\Sigma$ and $\bar{K}N$ thresholds

Pole movements on the complex energy manifold due to the increased effect of Pauli blocking. There are two I=0 poles and two I=1 poles. The pole trajectories were calculated from the free-space pole positions (encircled dots) up to the pole positions at full nuclear density ρ_0 . The solid triangles denote the K^-p and $\overline{K^0}n$ thresholds. The movement of the $z_{\bar{K}N}(I=0)$ pole demonstrates how the properties of in-medium $\bar{K}N$ interaction are related to the dynamics of the $\Lambda(1405)$ resonance in the nuclear medium.

single nucleon approximation, a coherent sum of $\bar{K}N$ interactions:

$$V_{K^{-}} = -\frac{2\pi}{\omega_{K}} \left(1 + \frac{\omega_{K}}{m_{N}}\right) F_{K^{-}N}(\vec{p}, \sqrt{s}; \rho) \rho$$

The kaons interacting with nuclei probe the subthreshold energy region! two-body c.m. system: $\vec{p}_K + \vec{p}_N = \vec{0}$ K^- -nucleus c.m. system: $\vec{p}_K + \vec{p}_N \neq \vec{0}$

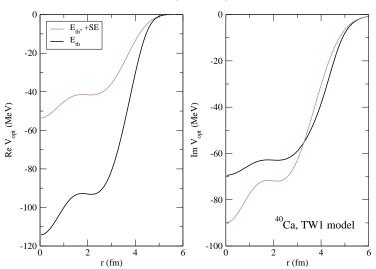
bound hadrons, averaging over angles, local density approximation, Fermi gas model:

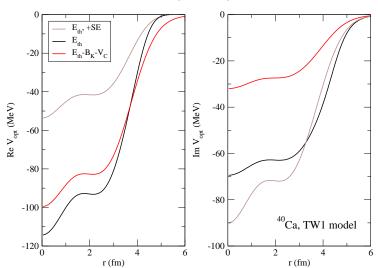
$$\sqrt{s} \approx E_{\rm th} - B_N - \frac{m_N}{m_N + m_K} B_K - 15.1 (\rho/\rho_0)^{2/3} + \frac{m_K}{m_N + m_K} \text{Re } \mathcal{V}_{K^-}(\rho) \text{ (in MeV)}$$

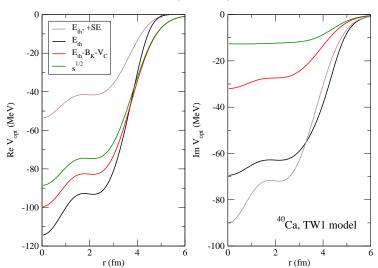
in nuclear medium, one has to use realistic momenta in the form factors $g_i(p)$

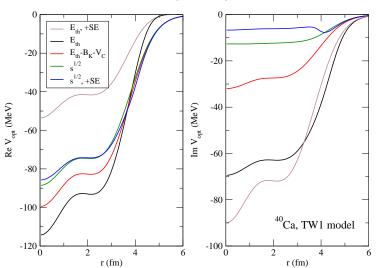
$$\rho^2 \approx \frac{m_K \, m_N}{(m_N + m_K)^2} [2 m_K \, T_N (\rho/\rho_0)^{2/3} - 2 m_N (B_K + {\rm Re} \, \mathcal{V}_{K^-}(\rho))],$$

A.C., E. Friedman, A. Gal, D. Gazda, J. Mareš - PRC84 (2011) 045206

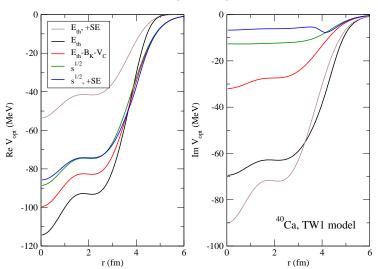








calculations by D. Gazda, J. Mareš, to appear in Nucl. Phys. A (2012)



calculations by D. Gazda, J. Mareš, to appear in Nucl. Phys. A (2012)

Summary

- The in-medium dynamics of the $\Lambda(1405)$ resonance is responsible for the rapid increase of the real part of our K^-p amplitude at energies about 30 MeV below the $\bar{K}N$ threshold.
- The Pauli blocking pushes the resonance structure above the threshold and the kaon self-energy is responsible for moving it back to energies where it is located in the free space.
- The observed sharp increase of K^-p in-medium attraction below the $\bar{K}N$ threshold is a robust feature common to all considered models.
- The construction of the optical potential from subthreshold $\bar{K}N$ energies allows to link the shallow \bar{K} -nuclear potentials based on the chiral $\bar{K}N$ amplitude evaluated at threshold and the deep phenomenological optical potentials obtained in fits to kaonic atoms.
- New measurements of $K^-p \longrightarrow \pi^0 \Lambda$ and $K^-p \longrightarrow \pi^0 \Sigma^0$ reactions at low kaon energies would be highly appreciated.