Workshop on Future Prospects of Hadron Physics at J-PARC and Large Scale Computational Physics

February 9 – 11, 2012 Ibaraki Quantum Beam Research Center

Production of medium and heavy hypernuclei

Toshio MOTOBA

(Osaka E-C)

CONTENTS

- Introduction / Basic motivations
 production and decays of hypernuclei is
 a window to disclose B-B interactions
- Reaction spectroscopy
 some theoretical predictions beyond p-shell (e,e'K+) at JLab, (K-,π) and (π,K) at JPARC
- 3. Production of strangeness -2 hypernuclei suggest (K-,K+) reaction on odd-Z sd-shell targets
- 4. Summary

Fig. 1-1

Old slide for many-body system with S

- 2. Hy 技 ---- new symmetry genuinely hypernuclear states
- 3. Interaction NN, YN, YY

First 3D-Chart

T.Motoba, Talk at *Program on Big Hadron Project Physics,* INS, U. Tokyo (1986), Genshikaku Kenkyu **32**, No.2. 97 (1987)

1. Introduction

Why medium-heavy hypernuclei?

- 1) A single-particle energies: not well known
- More chances of high-spin selectivity to see new aspects such as hyperon coupled with rotational and/or vibrational states.
- 3) Recent (e,e'K+) experiments encourage to go to sd- and fp-shell regions.
- 4) Expect to find "stable" 三-hypernuclear states, which leads to hyperon-mixing phenomena

Single-particle energies of Λ

Fig. 1. Energy spectra of ¹³_AC, ²⁸_ASi, ⁵¹_AV, ⁸⁹_AY, ¹³⁹_ALa and ²⁰⁸_APb are given as a function of A^{-2/3}, A being mass numbers of core nuclei. Solid (dashed) lines show calculated values by the G-matrix folding model derived from ESC08a (the Skyrme-HF model). Open circles denote the experimental values taken from Ref. 17).

2.1 Developments in reaction spectroscopy of hypernuclear production

$${}^{A}Z(J_{i}T_{i}\tau_{i})(K^{-},\pi^{-}){}^{A}Z(J_{f}T_{f}\tau_{f}) \qquad (\pi+,K+)$$

$$(\gamma,K+)$$

$$(K-,K+)$$

Theoretically reliable analyses take account of:

- 1. DW effects (DW vs. PW),
- 2. Microscopic treatment with elem. amplitudes,
- 3. Nuclear core excitation effects

$$(K^{-},\pi^{-})$$

 (π^+, K^+)

played a great role of exciting high-spin series

 Γ = 1.5 MeV (best)

(e,e'K+), $(\gamma, K+)$

Motoba. Sotona, Itonaga, Prog.Theor.Phys.S.<u>117</u>(1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f.

JLab Exp't : $\Gamma = 0.5 \text{ MeV}$

Theor. prediction vs. (e,e'K+) experiments

Motoba. Sotona, Itonaga, Prog. Theor. Phys. Sup. 117 (1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f.

----- Sotona's Calc.----→

Hall C (up) T. Miyoshi et al.

*P.R.L.***90** (**2003**) 232502. **Γ=0.75** MeV

Hall A (bottom), J.J. LeRose et al.

N.P. A**804** (**2008**) 116. Γ =**0.67** MeV

(e,e'K+) cross sections confirmed.

Table II. Comparison of the experimental energy levels and cross sections for $^{12}C(e, e'K^+)^{12}A$ B with the theoretical estimates. The systematic experimental errors are not shown. Taken from Ref. 3).

E_x^{Exp} (MeV)	Width (MeV)	Cross section $(nb/sr^2/GeV)$	E_x^{Cal} (MeV)	Main structure ${}^{11}{ m B}[J_c]\otimes j^A$	J_f^π	Cross section (nb/sr ² /GeV)
0.0 ± 0.03	$1.15{\pm}0.18$	4.48 ± 0.29	0.0	$[3/2^-; \text{g.s. }] \otimes s_{1/2}^{\Lambda}$	1-	1.02
			0.14	$[3/2^-; \text{g.s.}] \otimes s_{1/2}^{\Lambda}$	2^{-}	3.66
$2.65{\pm}0.10$	$0.95{\pm}0.43$	0.75 ± 0.16	2.67	$[1/2^-; 2.12] \otimes s_{1/2}^{\Lambda'}$	1^{-}	1.54
5.92 ± 0.13	$1.13{\pm}0.29$	$0.45{\pm}0.13$	5.74	$[3/2^-; 5.02] \otimes s_{1/2}^{\Lambda}$	2^{-}	0.58
			5.85	$[3/2^-; 5.02] \otimes s_{1/2}^{\Lambda}$	1^{-}	0.18
$9.54{\pm}0.16$	$0.93{\pm}0.46$	0.63 ± 0.20			_	_
10.93 ± 0.03	0.67 ± 0.15	3.42 ± 0.50	10.48	$[3/2^-; \text{g.s. }] \otimes p_{3/2}^{\Lambda}$	2^{+}	0.24
			10.52	$[3/2^-; \text{g.s. }] \otimes p^A$	1^{+}	0.12
			10.98	$[3/2^-; \text{g.s. }] \otimes p_{1/2}^{\Lambda}$	2^{+}	1.43
			11.05	$[3/2^-; \text{g.s. }] \otimes p_{3/2}^{\Lambda}$	3^+	2.19
12.36 ± 0.13	1.58 ± 0.29	1.19 ± 0.36	12.95	$[1/2^-; 2.12] \otimes p_{3/2}^{\Lambda}$	2^{+}	0.91
			13.05	$[1/2^-; 2.12] \otimes p^{\Lambda}$	1+	0.27

M. Iodice et al., Phys. Rev. Lett. 99 (2007), 052501.

(π+,K+) PW vs. DW

(1) In a typical (π+,K+): **N**eff = **0.184** (PW) **0.030** (DW) 1/6

(2) XS to low-J states are much more reduced, resulting in the sharper peaks

(3) Interesting DW effect (mechanism)

 $(K-,\pi-)$ on 28Si at p = 1.1

> p=1.5 GeV/c

(by Umeya)

Numerical Results: Production cross sections

(by Umeya)

(K-,p) at p~1.1 and 1.5 GeV/c expected to be done at J-PARC

- can produce polarized hypernuclei
- Not only "substitutional (∆J=0)" states but also other states are excited at the same time.
- provide chances to see interplays between Λ and collective motions of nuclear core

2.2 Electro/photo-production of sd-shell ~ hypernuclei

(some cases for sd-shell: already done at Jlab, and expected to be done at MAMI)

- Microscopic based on elem. ampl.
- DW: solution of the Klein-Gordon eq.
- Emphasize the importance of taking account of nuclear core excitation effects,

Hyperon recoil momentum and the transition operator determine the reaction characteristics

 q_{Λ} =350-420 MeV/c at E_Y=1.3 GeV

Lab $d\sigma/d\Omega$ for photoproduction (2Lab)

$$\frac{d\sigma}{d\Omega}\Big|_{\text{2Lab}} = \frac{(2\pi)^4 p^2 E_K E_r E_A}{k\{p(E_A + E_K) - k E_K \cos \theta_L\}} \Big| \langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_L \Big|^2, \qquad (2\cdot4)$$

$$\langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_{L} = a_{1}(\boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}) + a_{2}(\boldsymbol{\sigma} \cdot \hat{\mathbf{k}})(\hat{\mathbf{p}} \cdot \boldsymbol{\epsilon}) + a_{3}(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})(\hat{\mathbf{p}} \cdot \boldsymbol{\epsilon}) + a_{4}\{(\hat{\mathbf{k}} \times \hat{\mathbf{p}}) \cdot \boldsymbol{\epsilon}\}.$$
(2.5)

$$\langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_L = \epsilon_0 (f_0 + g_0 \sigma_0) + \epsilon_x (g_1 \sigma_1 + g_{-1} \sigma_{-1})$$

with definitions of the coefficients:

$$f_0 = a_4 \sin \theta_L$$

$$g_0=a_1$$
,

Spin-flip interaction are dominant

$$g_{\pm 1} = \frac{1}{\sqrt{2}} \{ \mp (a_1 + a_3 \sin^2 \theta_L) - i \sin \theta_L (a_2 + a_3 \cos \theta_L) \}. \tag{2.12}$$

 $(2 \cdot 11)$

Theor. x-section for $(d_{5/2})^6 (\gamma, K^+) [j_h-j_{\Lambda}]J$

DWIA							[nb/sr]						
Lambda	Lambda= s1/2L (-16.92)		(-E	p3/2L (-8.40)		p1/2L (-8.40)		1s1/2L (0.32)		d5/2L (0.69)		d3/2L (0.69)	
Proton hole d5/2 (-16.17)	2+ 3+ (g	29.2 63.8 (.s.)	1- 2- 3- 4-	5.4 7.1 4.2 141.8	2- 3-	19.4 76.2	2+ 3+	2.2	0+ 1+ 2+ 3+ 4+ 5+	0.0 26.0 0.3 26.7 0.5 164.1	1+ 2+ 3+ 4+	8.9 34.9 30.4 112.0	
p1/2 (-25.49)	0- 1-	9.4 30.5	1+ 2+	20 66.9	0+ 1+	0.0 28.3	0- 1-		2-3-	10.7	1- 2-	1.4 43.5	
p3/2 (-29.84)	1-2-	14.3 59.1	0+ 1+ 2+ 3+	0.0 8.9 0.4 109.1	1+ 2+	1.8 62.5	1-2-	5.9 24.8	1- 2- 3- 4-	3.2 4.5 4.5 148.6	0- 1+ 2+ 3+	2.0 5.7 17.5 96.3	
s1/2 (-44.55)	0+ 1+	0.1 19.2	1- 2-	12.1 50.0	0- 1-	7.3 23.7	0+ 1+	0.3 51.4	2+ 3+	27.0 58.1	1+ 2+	16.5 40.1	

Realistic prediction for ²⁸Si (γ,K+) _Λ²⁸Al with full sd-wf

By fully taking account of

- -- full $p(sd)^6$. $n(sd)^6$ configurations,
- -- fragmentations when a proton is converted,
- -- ²⁷Al core nuclear excitation
- -- K⁺ wave distortion effects

→ Comparison with the ²⁸Si (e,e'K+) exp.

Proton pickup from ${}^{28}Si(0^+):(sd)^6=(d_{5/2})^{4.1}(1s_{1/2})^{0.9}(d_{3/2})^{1.0}$

proton-state **fragmentations** should be taken into account *to be realistic*

Peaks can be classified by the characters

Major peak series : $[27\text{Al}(5/2_1^+)\times j^{\Lambda}]_J$ with $j^{\Lambda}=s$, p, d, ...

28Si(e,e'K+)28, AI - First Spectroscopy of 28, AI

Far better energy resolution!

In comaprison with $(\pi+,K+)$ experiment from KEK

3. Production of Ξ-hypernuclei (and ΛΛ-hypernuclei)

- -The similar theoretical framework has been applied to (K-,K+) reaction on 12C.
- DW: solution of the Klein-Gordon eq.
- -taking account of nuclear core excitation effects

Arbitrary smearing widths are used in these figures

BNL-E885

P. Khaustov et al, PRC 61 (2000)

BS strengths observed, but peaks not confirmed.

Suggesting: only WS-pot. depth:

U=12-14 MeV or less.

"shallow" 29

Reference position of J=1-(T=1) states. The relative positions of J_n show the different $\sigma.\sigma$ interaction nature of V_{EN} .

Ξ-N interactions used in Shell Model

Comparison in the form of $V = -V_0 + \Delta(\sigma.\sigma)$									
		V ₀	Δ	Δ/V ₀					
NE(ESC04d)	T=0	4.98	-15.81	-3.18					
	T=1	0.30	-2.96	-9.88					
NΞ(NHC-D)	T=0	2.14	4.75	2.23					
	T=1	1.55	0.79	0.51					
NA(NSC97f)	Γ=1/2	1.05	0.04	0.04					

σ.σ strengths are quite different for ESC and ND, so further trials and improvements are required.

Sensitive interaction dependence Nijmegen NHC-D vs. ESC04d

- Different partial-wave contributions
 NHC-D (large p-state attraction) vs. ESC04d(s-state)
- ESC04d (quite large spin- & isospin-dependence)

Table 1: Ξ single particle energies U_{Ξ} and conversion widths Γ_{Ξ} at normal density calculated with ESC04d and NHC-D. S-state contributions in (TSLJ) states and total P-state contributions are also given. All entries are in MeV.

	$^{11}S_0$	$^{13}S_{1}$	$^{31}S_{0}$	$^{33}S_{1}$	P	U_{Ξ}	ΓΞ
$ESC04d(\alpha = 0)$	6.4	-19.6	6.4	-5.0	-6.9	-18.7	11.4
$ESC04d(\alpha = .18)$	6.3	-18.4	7.2	-1.7	-5.6	-12.1	12.7
NHC-D	-2.6	0.7	-2.3	-0.4	-16.8	-21.4	1.1

Trying to use the most recent Ξ -N interaction from Nijmegen (ESC08)

Table 1: Partial wave contributions to $U_{\Xi}(\rho_0)$

model	T	${}^{1}S_{0}$	3S_1	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	3P_2	U_{Ξ}	Γ_{Ξ}
ESC08	0	4.0	-2.7	0.2	-2.2	0.6	-1.1		
	1	7.0	-19.5	-0.3	0.1	-3.6	-0.7	-18.0	6.0
ESC04d	0	6.4	-19.6	1.1	1.2	-1.3	-2.0		
	1	6.4	-5.0	-1.0	-0.6	-1.4	-2.8	-18.7	11.4

 Let us wait for the J-PARC Day-1 Exp. by Nagae et al, which will provide us a very important restriction on V(Ξ-N).

ESC04 modified to be ESC08!

(continuum bump should be larger)

As the second best candidates to extract information about the spin-, isospin-independent term V_0 , we propose to perform...

Choose ¹⁹F(1/2+) target for demonstration

As a "closed core (^{18}O)"+ Λ , cf. SO-splitting(0p)=152+-54 keV(C13)

Lightest sd-shell target: 19F

1-Skipped) discussion

on

Widths of Xi states: Xi-LLmixing

Why E-hypernuclei?

1) They provide unique information on the S=-2 B-B interactions inaccessible otherwise.

- 2) High-priority experiment at J-PARC (2009—E-05: "Spectroscopic study of X-hypernucleus via the ¹²C(K-,K+) _E ¹²Be reaction" by T. Nagae et al.
 - → Realistic Calculations are required.

Summary (proposal) for Ξ-hypernuclear exp. programs to be done at J-PARC important point is to extract a firm constraint on the Ξ -N central force (Meson theory shows strong spin-isospin dependence)

 To realize this purpose, I propose to choose odd-Z natural targets such as 19F (18O+p), 27AI (26Mg+p), 31P (30Si+p),..... (Cal. In progress