Workshop on Future Prospects of Hadron Physics at J-PARC and Large Scale Computational Physics February 9 – 11, 2012 Ibaraki Quantum Beam Research Center # Production of medium and heavy hypernuclei **Toshio MOTOBA** (Osaka E-C) ### **CONTENTS** - Introduction / Basic motivations production and decays of hypernuclei is a window to disclose B-B interactions - Reaction spectroscopy some theoretical predictions beyond p-shell (e,e'K+) at JLab, (K-,π) and (π,K) at JPARC - 3. Production of strangeness -2 hypernuclei suggest (K-,K+) reaction on odd-Z sd-shell targets - 4. Summary Fig. 1-1 ### Old slide for many-body system with S - 2. Hy 技 ---- new symmetry genuinely hypernuclear states - 3. Interaction NN, YN, YY #### First 3D-Chart T.Motoba, Talk at *Program on Big Hadron Project Physics,* INS, U. Tokyo (1986), Genshikaku Kenkyu **32**, No.2. 97 (1987) ### 1. Introduction ### Why medium-heavy hypernuclei? - 1) A single-particle energies: not well known - More chances of high-spin selectivity to see new aspects such as hyperon coupled with rotational and/or vibrational states. - 3) Recent (e,e'K+) experiments encourage to go to sd- and fp-shell regions. - 4) Expect to find "stable" 三-hypernuclear states, which leads to hyperon-mixing phenomena ### Single-particle energies of Λ Fig. 1. Energy spectra of ¹³_AC, ²⁸_ASi, ⁵¹_AV, ⁸⁹_AY, ¹³⁹_ALa and ²⁰⁸_APb are given as a function of A^{-2/3}, A being mass numbers of core nuclei. Solid (dashed) lines show calculated values by the G-matrix folding model derived from ESC08a (the Skyrme-HF model). Open circles denote the experimental values taken from Ref. 17). # 2.1 Developments in reaction spectroscopy of hypernuclear production $${}^{A}Z(J_{i}T_{i}\tau_{i})(K^{-},\pi^{-}){}^{A}Z(J_{f}T_{f}\tau_{f}) \qquad (\pi+,K+)$$ $$(\gamma,K+)$$ $$(K-,K+)$$ #### Theoretically reliable analyses take account of: - 1. DW effects (DW vs. PW), - 2. Microscopic treatment with elem. amplitudes, - 3. Nuclear core excitation effects $$(K^{-},\pi^{-})$$ (π^+, K^+) played a great role of exciting high-spin series Γ = 1.5 MeV (best) (e,e'K+), $(\gamma, K+)$ Motoba. Sotona, Itonaga, Prog.Theor.Phys.S.<u>117</u>(1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f. _____ JLab Exp't : $\Gamma = 0.5 \text{ MeV}$ ### Theor. prediction vs. (e,e'K+) experiments Motoba. Sotona, Itonaga, Prog. Theor. Phys. Sup. 117 (1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f. ----- Sotona's Calc.----→ Hall C (up) T. Miyoshi et al. *P.R.L.***90** (**2003**) 232502. **Γ=0.75** MeV Hall A (bottom), J.J. LeRose et al. *N.P.* A**804** (**2008**) 116. Γ =**0.67** MeV ### (e,e'K+) cross sections confirmed. Table II. Comparison of the experimental energy levels and cross sections for $^{12}C(e, e'K^+)^{12}A$ B with the theoretical estimates. The systematic experimental errors are not shown. Taken from Ref. 3). | E_x^{Exp} (MeV) | Width
(MeV) | Cross section $(nb/sr^2/GeV)$ | E_x^{Cal} (MeV) | Main structure ${}^{11}{ m B}[J_c]\otimes j^A$ | J_f^π | Cross section
(nb/sr ² /GeV) | |--------------------------|-----------------|-------------------------------|--------------------------|---|-----------|--| | 0.0 ± 0.03 | $1.15{\pm}0.18$ | 4.48 ± 0.29 | 0.0 | $[3/2^-; \text{g.s. }] \otimes s_{1/2}^{\Lambda}$ | 1- | 1.02 | | | | | 0.14 | $[3/2^-; \text{g.s.}] \otimes s_{1/2}^{\Lambda}$ | 2^{-} | 3.66 | | $2.65{\pm}0.10$ | $0.95{\pm}0.43$ | 0.75 ± 0.16 | 2.67 | $[1/2^-; 2.12] \otimes s_{1/2}^{\Lambda'}$ | 1^{-} | 1.54 | | 5.92 ± 0.13 | $1.13{\pm}0.29$ | $0.45{\pm}0.13$ | 5.74 | $[3/2^-; 5.02] \otimes s_{1/2}^{\Lambda}$ | 2^{-} | 0.58 | | | | | 5.85 | $[3/2^-; 5.02] \otimes s_{1/2}^{\Lambda}$ | 1^{-} | 0.18 | | $9.54{\pm}0.16$ | $0.93{\pm}0.46$ | 0.63 ± 0.20 | | | _ | _ | | 10.93 ± 0.03 | 0.67 ± 0.15 | 3.42 ± 0.50 | 10.48 | $[3/2^-; \text{g.s. }] \otimes p_{3/2}^{\Lambda}$ | 2^{+} | 0.24 | | | | | 10.52 | $[3/2^-; \text{g.s. }] \otimes p^A$ | 1^{+} | 0.12 | | | | | 10.98 | $[3/2^-; \text{g.s. }] \otimes p_{1/2}^{\Lambda}$ | 2^{+} | 1.43 | | | | | 11.05 | $[3/2^-; \text{g.s. }] \otimes p_{3/2}^{\Lambda}$ | 3^+ | 2.19 | | 12.36 ± 0.13 | 1.58 ± 0.29 | 1.19 ± 0.36 | 12.95 | $[1/2^-; 2.12] \otimes p_{3/2}^{\Lambda}$ | 2^{+} | 0.91 | | | | | 13.05 | $[1/2^-; 2.12] \otimes p^{\Lambda}$ | 1+ | 0.27 | M. Iodice et al., Phys. Rev. Lett. 99 (2007), 052501. ### (π+,K+) PW vs. DW (1) In a typical (π+,K+): **N**eff = **0.184** (PW) **0.030** (DW) 1/6 (2) XS to low-J states are much more reduced, resulting in the sharper peaks (3) Interesting DW effect (mechanism) $(K-,\pi-)$ on 28Si at p = 1.1 > p=1.5 GeV/c (by Umeya) #### **Numerical Results: Production cross sections** (by Umeya) ### (K-,p) at p~1.1 and 1.5 GeV/c expected to be done at J-PARC - can produce polarized hypernuclei - Not only "substitutional (∆J=0)" states but also other states are excited at the same time. - provide chances to see interplays between Λ and collective motions of nuclear core ### 2.2 Electro/photo-production of sd-shell ~ hypernuclei (some cases for sd-shell: already done at Jlab, and expected to be done at MAMI) - Microscopic based on elem. ampl. - DW: solution of the Klein-Gordon eq. - Emphasize the importance of taking account of nuclear core excitation effects, # Hyperon recoil momentum and the transition operator determine the reaction characteristics q_{Λ} =350-420 MeV/c at E_Y=1.3 GeV ### **Lab** $d\sigma/d\Omega$ for photoproduction (2Lab) $$\frac{d\sigma}{d\Omega}\Big|_{\text{2Lab}} = \frac{(2\pi)^4 p^2 E_K E_r E_A}{k\{p(E_A + E_K) - k E_K \cos \theta_L\}} \Big| \langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_L \Big|^2, \qquad (2\cdot4)$$ $$\langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_{L} = a_{1}(\boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}) + a_{2}(\boldsymbol{\sigma} \cdot \hat{\mathbf{k}})(\hat{\mathbf{p}} \cdot \boldsymbol{\epsilon}) + a_{3}(\boldsymbol{\sigma} \cdot \hat{\mathbf{p}})(\hat{\mathbf{p}} \cdot \boldsymbol{\epsilon}) + a_{4}\{(\hat{\mathbf{k}} \times \hat{\mathbf{p}}) \cdot \boldsymbol{\epsilon}\}.$$ (2.5) $$\langle \mathbf{k} - \mathbf{p}, \mathbf{p} | t | \mathbf{k}, 0 \rangle_L = \epsilon_0 (f_0 + g_0 \sigma_0) + \epsilon_x (g_1 \sigma_1 + g_{-1} \sigma_{-1})$$ with definitions of the coefficients: $$f_0 = a_4 \sin \theta_L$$ $$g_0=a_1$$, Spin-flip interaction are dominant $$g_{\pm 1} = \frac{1}{\sqrt{2}} \{ \mp (a_1 + a_3 \sin^2 \theta_L) - i \sin \theta_L (a_2 + a_3 \cos \theta_L) \}. \tag{2.12}$$ $(2 \cdot 11)$ ### Theor. x-section for $(d_{5/2})^6 (\gamma, K^+) [j_h-j_{\Lambda}]J$ | DWIA | | | | | | | [nb/sr] | | | | | | | |------------------------------------|---------------------------|-----------------------|----------------------|----------------------------|----------|------------------|-----------|------------------|----------------------------------|--|----------------------|------------------------------|--| | Lambda | Lambda= s1/2L
(-16.92) | | (-E | p3/2L
(-8.40) | | p1/2L
(-8.40) | | 1s1/2L
(0.32) | | d5/2L
(0.69) | | d3/2L
(0.69) | | | Proton
hole
d5/2
(-16.17) | 2+
3+
(g | 29.2
63.8
(.s.) | 1-
2-
3-
4- | 5.4
7.1
4.2
141.8 | 2-
3- | 19.4
76.2 | 2+
3+ | 2.2 | 0+
1+
2+
3+
4+
5+ | 0.0
26.0
0.3
26.7
0.5
164.1 | 1+
2+
3+
4+ | 8.9
34.9
30.4
112.0 | | | p1/2
(-25.49) | 0-
 1- | 9.4
30.5 | 1+
2+ | 20
66.9 | 0+
1+ | 0.0
28.3 | 0-
1- | | 2-3- | 10.7 | 1-
2- | 1.4
43.5 | | | p3/2
(-29.84) | 1-2- | 14.3
59.1 | 0+
1+
2+
3+ | 0.0
8.9
0.4
109.1 | 1+
2+ | 1.8
62.5 | 1-2- | 5.9
24.8 | 1-
2-
3-
4- | 3.2
4.5
4.5
148.6 | 0-
1+
2+
3+ | 2.0
5.7
17.5
96.3 | | | s1/2
(-44.55) | 0+
1+ | 0.1
19.2 | 1-
2- | 12.1
50.0 | 0-
1- | 7.3
23.7 | 0+
1+ | 0.3
51.4 | 2+
3+ | 27.0
58.1 | 1+
2+ | 16.5
40.1 | | ### Realistic prediction for ²⁸Si (γ,K+) _Λ²⁸Al with full sd-wf ### By fully taking account of - -- full $p(sd)^6$. $n(sd)^6$ configurations, - -- fragmentations when a proton is converted, - -- ²⁷Al core nuclear excitation - -- K⁺ wave distortion effects → Comparison with the ²⁸Si (e,e'K+) exp. #### Proton pickup from ${}^{28}Si(0^+):(sd)^6=(d_{5/2})^{4.1}(1s_{1/2})^{0.9}(d_{3/2})^{1.0}$ ### proton-state **fragmentations** should be taken into account *to be realistic* ### Peaks can be classified by the characters Major peak series : $[27\text{Al}(5/2_1^+)\times j^{\Lambda}]_J$ with $j^{\Lambda}=s$, p, d, ... ### 28Si(e,e'K+)28, AI - First Spectroscopy of 28, AI Far better energy resolution! In comaprison with $(\pi+,K+)$ experiment from KEK ## 3. Production of Ξ-hypernuclei (and ΛΛ-hypernuclei) - -The similar theoretical framework has been applied to (K-,K+) reaction on 12C. - DW: solution of the Klein-Gordon eq. - -taking account of nuclear core excitation effects Arbitrary smearing widths are used in these figures #### **BNL-E885** P. Khaustov et al, PRC 61 (2000) BS strengths observed, but peaks not confirmed. Suggesting: only WS-pot. depth: *U*=12-14 MeV or less. "shallow" 29 # Reference position of J=1-(T=1) states. The relative positions of J_n show the different $\sigma.\sigma$ interaction nature of V_{EN} . ### Ξ-N interactions used in Shell Model | Comparison in the form of $V = -V_0 + \Delta(\sigma.\sigma)$ | | | | | | | | | | |--|-------|----------------|--------|-------------------------|--|--|--|--|--| | | | V ₀ | Δ | Δ/V ₀ | | | | | | | NE(ESC04d) | T=0 | 4.98 | -15.81 | -3.18 | | | | | | | | T=1 | 0.30 | -2.96 | -9.88 | | | | | | | NΞ(NHC-D) | T=0 | 2.14 | 4.75 | 2.23 | | | | | | | | T=1 | 1.55 | 0.79 | 0.51 | | | | | | | NA(NSC97f) | Γ=1/2 | 1.05 | 0.04 | 0.04 | | | | | | σ.σ strengths are quite different for ESC and ND, so further trials and improvements are required. ### Sensitive interaction dependence Nijmegen NHC-D vs. ESC04d - Different partial-wave contributions NHC-D (large p-state attraction) vs. ESC04d(s-state) - ESC04d (quite large spin- & isospin-dependence) Table 1: Ξ single particle energies U_{Ξ} and conversion widths Γ_{Ξ} at normal density calculated with ESC04d and NHC-D. S-state contributions in (TSLJ) states and total P-state contributions are also given. All entries are in MeV. | | $^{11}S_0$ | $^{13}S_{1}$ | $^{31}S_{0}$ | $^{33}S_{1}$ | P | U_{Ξ} | ΓΞ | |------------------------|------------|--------------|--------------|--------------|-------|-----------|------| | $ESC04d(\alpha = 0)$ | 6.4 | -19.6 | 6.4 | -5.0 | -6.9 | -18.7 | 11.4 | | $ESC04d(\alpha = .18)$ | 6.3 | -18.4 | 7.2 | -1.7 | -5.6 | -12.1 | 12.7 | | NHC-D | -2.6 | 0.7 | -2.3 | -0.4 | -16.8 | -21.4 | 1.1 | ### Trying to use the most recent Ξ -N interaction from Nijmegen (ESC08) Table 1: Partial wave contributions to $U_{\Xi}(\rho_0)$ | model | T | ${}^{1}S_{0}$ | 3S_1 | ${}^{1}P_{1}$ | ${}^{3}P_{0}$ | ${}^{3}P_{1}$ | 3P_2 | U_{Ξ} | Γ_{Ξ} | |--------|---|---------------|---------|---------------|---------------|---------------|---------|-----------|----------------| | ESC08 | 0 | 4.0 | -2.7 | 0.2 | -2.2 | 0.6 | -1.1 | | | | | 1 | 7.0 | -19.5 | -0.3 | 0.1 | -3.6 | -0.7 | -18.0 | 6.0 | | ESC04d | 0 | 6.4 | -19.6 | 1.1 | 1.2 | -1.3 | -2.0 | | | | | 1 | 6.4 | -5.0 | -1.0 | -0.6 | -1.4 | -2.8 | -18.7 | 11.4 | Let us wait for the J-PARC Day-1 Exp. by Nagae et al, which will provide us a very important restriction on V(Ξ-N). ### ESC04 modified to be ESC08! (continuum bump should be larger) As the second best candidates to extract information about the spin-, isospin-independent term V_0 , we propose to perform... ### Choose ¹⁹F(1/2+) target for demonstration As a "closed core (^{18}O)"+ Λ , cf. SO-splitting(0p)=152+-54 keV(C13) ### Lightest sd-shell target: 19F 1-Skipped) discussion on Widths of Xi states: Xi-LLmixing ### Why E-hypernuclei? 1) They provide unique information on the S=-2 B-B interactions inaccessible otherwise. - 2) High-priority experiment at J-PARC (2009—E-05: "Spectroscopic study of X-hypernucleus via the ¹²C(K-,K+) _E ¹²Be reaction" by T. Nagae et al. - → Realistic Calculations are required. Summary (proposal) for Ξ-hypernuclear exp. programs to be done at J-PARC important point is to extract a firm constraint on the Ξ -N central force (Meson theory shows strong spin-isospin dependence) To realize this purpose, I propose to choose odd-Z natural targets such as 19F (18O+p), 27AI (26Mg+p), 31P (30Si+p),..... (Cal. In progress