# Charmonium-hadron scatterings and exotics from lattice QCD

Sho Ozaki (Univ. of Tokyo)

in collaboration with

Shoichi Sasaki (Univ. of Tokyo)

Tetsuo Hatsuda (Univ. of Tokyo & Riken)

#### Contents

- Introduction
- Charmonium(J/ψ)-Φ scattering and Y(4140) search
- Bottomonium-hadron scatterings
- Summary

#### Introduction

- Recently many charmonium(cō) like particles XYZ are observed in several big facilities in the world.
- Among them, some Y resonances have interesting features.

- I) Although these resonances are heavy, these are very stable. Widths are quite "narrow" as compared to typical hadron resonances.
- 2) Open charm channel decays seem to be suppressed.



#### Introduction

- Recently many charmonium(cō) like particles XYZ are observed in several big facilities in the world.
- Among them, some Y resonances have interesting features.
  - I) Although these resonances are heavy, these are very stable. Widths are quite "narrow" as compared to typical hadron resonances.
  - 2) Open charm channel decays seem to be suppressed.



# Example I) Initial State Radiation(ISR)-produced I^-- Y families (including Y(4260)):



in Belle experiments

# Example 2) Y(4140).

T. Aaltonen et al, PRL 102, 242002 (2009)

$$B o J/\psi \phi K \qquad M_Y = 4143.0 \pm 2.9 \pm 1.2 {
m MeV}$$
  $Y(4140) \qquad \Gamma_Y = 11.6^{+8.3}_{-5.0} \pm 3.7 {
m MeV}$  quite narrow width



It seems that some Y states do not couple to open charm channels.

Is there a specific selection rule?

These features should be related to the structure of Y states, and charmonium( $J/\Psi$ )-hadron interactions.

# Example 2) Y(4140).

T. Aaltonen et al, PRL 102, 242002 (2009)

$$B o J/\psi \phi K \qquad M_Y = 4143.0 \pm 2.9 \pm 1.2 {
m MeV}$$
  $Y(4140) \qquad \Gamma_Y = 11.6^{+8.3}_{-5.0} \pm 3.7 {
m MeV}$  quite narrow width



It seems that some Y states do not couple to open charm channels.

Is there a specific selection rule?

These features should be related to the structure of Y states, and charmonium(J/ $\psi$ )-hadron interactions.

#### Charmonium-hadron interactions



#### Charmonium-hadron interactions



So if there exist a (Y) resonance in charmonium-hadron system, gluons would play very interesting role!

Non-perturbative method such as lattice QCD is really needed to study this system.

# J/ψ-Φ scattering and Y(4140)



with

$$J^P=(0^\pm,1^\pm,2^\pm)$$
 channels

on



Today, we focus on s-wave:  $J^P = (0^+, 1^+, 2^+)$ 

In order to search a "narrow" resonance in "low energy" regions near thresholds, we introduce the twisted boundary condition.

## Periodic Boundary Condition

$$\phi(\vec{x} + L\vec{\epsilon}_i) = \phi(\vec{x}) , \qquad i = x, y, z$$
 
$$\longrightarrow \vec{k} = \frac{2\pi}{L} \vec{n}$$
 
$$E_1 = k_1^2/2\mu \sim 100 \text{ MeV} \longrightarrow \text{Bad resolution}$$

Twisted Boundary Condition (TBC) P.F. Bedaque, PLB593 (2004) 84

$$\phi(\vec{x} + L\vec{\epsilon}_i) = \underline{e^{i\theta_i}}\phi(\vec{x})$$

$$\longrightarrow \vec{k} = \frac{2\pi}{L}(\vec{n} + \underline{\vec{d}}) , \quad \vec{d} = (\frac{\theta_x}{2\pi}, \frac{\theta_y}{2\pi}, \frac{\theta_z}{2\pi})$$

We can investigate low energy scatterings and search a narrow resonance with a good energy resolution.

#### Finite size method

M. Luscher, NPB354 (1991) 531-578

#### Finite size formula

$$\tan \delta_0(k) = \frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1, q^2)} \quad \text{where} \quad q = \frac{Lk}{2\pi}$$

#### Generalized zeta-function

$$\mathcal{Z}_{00}(s,q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n} \in Z^3} (\vec{n}^2 - q^2)^{-s}$$

- Finite size formula is the relation which connects energy eigenvalue in a finite volume with scattering phase shift in an infinite volume.
- This method successfully describe  $\rho$  meson from  $\pi$ - $\pi$  scattering. S.Aoki et al (CP-PACS) PRD 76, 094506 (07)

#### Finite size method

M. Luscher, NPB354 (1991) 531-578

#### Finite size formula

$$\tan \delta_0(k) = \frac{\pi^{3/2}q}{\mathcal{Z}_{00}(1, q^2)} \quad \text{where} \quad q = \frac{Lk}{2\pi}$$

#### Generalized zeta-function

$$\mathcal{Z}_{00}(s,q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{n} \in Z^3} (\vec{n}^2 - q^2)^{-s}$$

- Finite size formula is the relation which connects energy eigenvalue in a finite volume with scattering phase shift in an infinite volume.
- Here we would like to searchY(4140) from J/ $\psi$ - $\Phi$  scattering in terms of the finite size method.

#### Combine finite size method with TBC

#### Finite size formula with TBC

$$\tan \delta_0(k) = \frac{\pi^{3/2} q}{\mathcal{Z}_{00}^{\theta}(1, q^2)}$$

$$\mathcal{Z}_{00}^{\theta}(1,q^2) = \frac{1}{\sqrt{4\pi}} \sum_{\vec{r} \in \Gamma_{\theta}} (\vec{r}^2 - q^2)^{-1}$$

$$\Gamma_{\theta} = \{ \vec{r} \mid \vec{r} = \frac{2\pi}{L} (\vec{n} + \frac{\vec{\theta}}{2\pi}), \quad \vec{n} \in \mathbb{Z}^3 \}$$

- The derivation and calculation techniques with arbitrary angles will be shown in the paper which is currently in preparation.
- By using this formula, we can investigate "low energy" hadron scatterings near thresholds and search "narrow" resonances with a desired resolution.

$$k = \sqrt{2\mu \Delta E}$$

$$E_{\theta V} = \sqrt{\frac{\theta}{L}^2 + M_V^2}$$

$$\Delta E = E_{J/\psi-\phi} - (M_{J/\psi} + M_\phi)$$

$$= [E_{J/\psi-\phi} - (E_{\theta J/\psi} + E_{\theta \phi})] + [E_{\theta J/\psi} - M_{J/\psi}] + [E_{\theta \phi} - M_\phi]$$

$$\Delta E = \delta E_{\theta} + \epsilon_{\theta J/\psi} + \epsilon_{\theta \phi}$$

Interaction strength Energy of free 2 particles

$$\theta = \theta_2 \frac{}{\int \delta E_{\theta_2}} \epsilon_{\theta_2 J/\psi} + \epsilon_{\theta_2 \phi}$$

$$\theta = \theta_1 \frac{}{\delta E_{\theta_1}} \epsilon_{\theta_1 J/\psi} + \epsilon_{\theta_1 \phi}$$

$$\theta=0$$
  $0:J/\psi-\phi$  threshold

# Measurement of $\delta E$

#### Two-point function

$$G^{\phi}(t,t_{src}) = \langle \hat{O}_{\phi}(t)\hat{O}_{\phi}^{\dagger}(t_{src})\rangle \qquad \text{with} \qquad \hat{O}^{\phi}(t) = \bar{s}(t)\gamma_{i}\bar{s}(t)$$

$$G^{J/\psi}(t,t_{src}) = \langle \hat{O}_{J/\psi}(t)\hat{O}_{J/\psi}^{\dagger}(t_{src})\rangle \qquad \hat{O}^{J/\psi}(t) = \bar{c}(t)\gamma_{i}\bar{c}(t)$$

#### Four-point function

$$G^{J/\psi-\phi}(t,t_{src}) = \langle \hat{O}_{\phi}(t)\hat{O}_{J/\psi}(t)[\hat{O}_{\phi}(t_{src})\hat{O}_{J/\psi}(t_{src})]^{\dagger}\rangle$$

$$\frac{G^{J/\psi-\phi}(t,t_{src})}{G^{J/\psi}(t,t_{src})G^{\phi}(t,t_{src})} \sim e^{-\underline{\delta}Et}$$

$$\delta E = \left| \begin{array}{c} \sqrt{J/\psi} \\ \phi \end{array} \right| - \left( \left| \begin{array}{c} \sqrt{J/\psi} \\ \sqrt{J/\psi} \end{array} \right| + \left| \begin{array}{c} \phi \\ \sqrt{J/\psi} \\ \sqrt{J/\psi} \end{array} \right| \right)$$

## Lattice set up

- PACS-CS 2+1 flavor dynamical gauge configurations at  $m_\pi=156~{
  m MeV}$  S.Aoki et al, PRD79, 034503, 2009
  - $32^3 \times 64$  lattice
  - a = 0.0907(13) fm
  - La ~ 2.9 fm
  - 198 configs
  - $\kappa_s = 0.13640$
  - Wall source
- Relativistic Heavy Quark (RHQ) action for charm
  Y. Namekawa et al, PRD84:074505, 2011
  - Tsukuba type RHQ action (5 parameters)

| $\kappa_{ m charm}$ | $\nu$  | $r_s$  | $c_B$  | $c_E$  |
|---------------------|--------|--------|--------|--------|
| 0.1082              | 1.2153 | 1.2131 | 2.0268 | 1.7911 |

# Result of $\delta E$



- J/ψ-Φ interaction is attractive.
- The strength of the interaction is E-independent.

# Threshold parameters: Scattering lengths

$$a_{J/\psi-\phi}^{J=0} = -0.151(20) \text{ fm}$$

$$a_{J/\psi-\phi}^{J=1} = -0.130(18) \text{ fm}$$

$$a_{J/\psi-\phi}^{J=2} = -0.109(18) \text{ fm}$$

## Our definition

$$-\frac{\tan \delta_0}{k}|_{k\to 0} = a_{J/\psi-\phi}$$

$$a_{J/\psi-\phi} < 0$$
: attractive

#### Quenched results

$$a_{J/\psi-\phi}^{J=0} = -0.178(21) \text{ fm}$$

$$a_{J/\psi-\phi}^{J=1} = -0.152(23) \text{ fm}$$

$$a_{J/\psi-\phi}^{J=2} = -0.123(16) \text{ fm}$$

Quenched results and full QCD results are quite close within  $I\sigma$ .

This would reflects that J/ψ-Φ system is indeed governed by gluon-dynamics.

# Low energy behaviors of scattering phase shift





No structure in low energy J/ $\psi$ - $\Phi$  system near the thresholds.

These seem typical s-wave behaviors:  $\delta_l \sim (\Delta E)^{l+\frac{1}{2}}$ 



The data show a leading order behavior of s-wave phase shift:

$$\delta_0(k) = -a_0 k = -a_0 \sqrt{2\mu\Delta E}$$

with the scattering length determined at the threshold

$$a_{J/\psi-\phi}^{J=0} = -0.151(20) \text{ fm}$$







# Result of $\delta E$ J=0 $J/\psi - \Upsilon$ x10^-4 x10^-4 *γ*-4 10 30 10 20 $\Delta E$ MeV

# Φ-Y scattering length

$$a_{\phi-\Upsilon}^{J=0} = -0.068(13) \text{ fm}$$

$$a_{\phi-\Upsilon}^{J=1} = -0.063(13) \text{ fm}$$

$$a_{\phi-\Upsilon}^{J=2} = -0.057(12) \text{ fm}$$

# J/ψ-Y scattering length

$$a_{J/\psi-\Upsilon}^{J=0} = -0.076(11) \text{ fm}$$

$$a_{J/\psi-\Upsilon}^{J=1} = -0.069(10) \text{ fm}$$

$$a_{J/\psi-\Upsilon}^{J=2} = -0.064(11) \text{ fm}$$



# Summary

- We investigate the low energy s-wave J/ $\psi$ -Φ scattering with PACS-CS 2+1 dynamical gauge configurations (mπ=156 MeV).
- Their interactions are attractive, but no E-dependence.
- In terms of the finite size method with TBC, we calculate scattering phase shifts near the threshold. The data show typical s-wave behaviors but there is no resonance in low energy s-wave J/Ψ-Φ systems.
- We calculate scattering lengths, and compare with quenched results.
  - → gluon-dynamics seem important in this system.
- We also investigate Bottomonium scatterings.

# **Prospects**

As a next step we will perform P-wave calculations  $(J^P = (0^-, I^-, 2^-))$  and search Y(4140) resonance.

If Y(4140) resonance exist on the lattice...

- Determine parity and spin of the resonance.
- Construct J/ $\psi$ - $\Phi$  potential, and investigate the structure of Y(4140) resonance in terms of its BS wave function.