Possible Hadron Physics with HighMomentum Beam Lines

Shinya Sawada (KEK)

Contents

- n High-momemtum Beam Line
- n Hadron Physics with High-momentum Beam Line
- n Separated high-mom beam line at extended HH
- n Hadron Physics with Separated High-momentum Beam Line?

February 10, 2012

M

Hadron Experimental Facility (Current Layout)

High-Momentum Beam Line

- n For 10¹⁰ protons/s (E16, vector meson mass), 10¹² protons/s (P04, nucleon structure), and unseparated p/K.
- n Yet to be funded!

February 10, 2012

Unseparated Beams (30GeV)

n 30GeV protons + 2% loss copper target. Production angle of 4 degree and (Dp/p)DW= 0.2msr%.

	Momentum (GeV/c)	ds/dpdW (mb/sr/GeV/c)	Yield at SM1 (per 10 ¹⁴ protons)	Yield at 120m (per 10 ¹⁴ protons)
p+	5	1400	3.7E7	2.4E7
p+	10	210	1.1E7	8.9E6
p-	5	1000	2.6E7	1.7E7
p-	10	130	6.7E6	5.4E6
K+	5	130	3.3E6	1.3E5
K+	10	28	1.4E6	2.8E5
K-	5	61	1.6E6	6.4E4
K-	10	7.0	3.6E5	7.2E4
pbar	5	11	2.8E5	2.8E5
pbar	10	1.1	5.7E4	5.7E4

Even with 30 GeV protons, enough intensity can be obtained especially for pions!

High Momentum Beam Line

- Main beam: 10¹³ 10¹⁴ protons/spill
 à Branched beam: 10⁹ 10¹⁰ or 10¹² protons/spill
- n Conventional method: Electrostatic septum and/or Lambertson magnet
 - Septum: similar to the one used at the slow extraction from the 50-GeV Main Ring.
 - Limited bending power
 - n Need 4.85m to bend 30GeV/c beam for 5 deg., even with 1.8T field.
 - Magnet has an issue on radiation and heat.
- n Advanced method: Bent Crystal
 - May need only 10mm crystal for 5 deg bending of 30GeV/c beam.
 - Principle was proved at a test experiment at KEK-PS.
 - Need realistic test and design
 - n Test experiment with the beam is planned.

Test Experiment at KEK-PS

または、GEMを用いた profile monitor **Newly Fabricated Crystals**

- n Self-support bent crystal is NOT obvious.
- n We have tried"plastic bending" of10mm length and 5degree bending.
- n To be tested by the proton beam at J-PARC!

EXPERIMENTS AT HIGH MOMENTUM BEAM LINE with primary protons

J-PARC E16: Electron pair spectrometer to explore the chiral symmetry in QCD

primary proton beam at high momentum beam line + large acceptance electron spectrometer

10⁷ interaction (10 X E325) 10¹⁰ protons/spill with 0.1% interaction length target

à GEM Tracker

eID: Gas Cherenkov + Lead Glass Large Acceptance (5 X E325) à x100 statistics

velocity dependence nuclear number dependence (p à Pb) centrality dependence

à systematic study of mass modification

P04: HIGH MASS DIMUON MEASUREMENT

.

Examples of Drell-Yan: Fermilab Experiments

М

Antiquarks in nucleons

- n dbar/ubar at Large x using 50 GeV Protons.
- n J-PARC can measure d-bar/ubar at larger x.
- Not only the flavor asymmetry for p + p, but also other measurements, such as nuclear dependence, spin observables, etc. can be done.
- n Strategy: SeaQuest(E906) at Fermilab until ~2015.

 10^{12} protons per spill (3 s) 50-cm long LH_2/LD_2 targets 60-day runs for each targets assuming 50% efficiency

February 10, 2012

Drell-Yan Spectrometer for E-906/SeaQuest (25m long)

Targets

(liquid H_2 , D_2 , and splig targets) 2012 **Solid Iron Magnet**

(focusing magnet, hadron absorber and beam dump)

(hodoscope array, drift chamber track.)

Strategy

- n SeaQuest at Fermilab
 - 2012 2015 with 120 GeV protons
 - Polarized beam(/target) after 2015?
 - n Work in progress

n Dimuons at J-PARC?

- Depending on the results from SeaQuest, measurement of dbar/ubar at 50-GeV may be very much interesting.
- Even with 30 GeV, J/Psi measurement would be worth pursuing.
 - n Production mechanism
 - n J/Psi interaction with nucleon/nucleus? à Ohnishi's talk

×

J/Psi: gg or q-qbar?

Gluon distributions in proton and neutron are very similar at 800 GeV. At lower energies, J/Psi might be produced by a gluon-gluon fusion. à Azimuthal angle dependence.

Hadron Physics with Higher Momentum (Separated) Beams?

Draft Idea of Hadron Hall Extension in a Private Level

K10

- n Separated beam line up to ~10GeVc.
- n RF separator or electrostatic separator (for lower momentum).
- n Aims at 10^6 to $\sim 10^7$ K's/pbar's /second.
- n If one uses 0.35 g/cm² H₂ target (~5cm long), the luminosity would be 2E29 to 2E30 /cm²/sec
 - Cf. PANDA@FAIR: 2E32 /cm²/sec.

.

K10: Possible Physics?

- n Baryon spectroscopy with S=-1
 - (pi, K+) reaction
- n Baryon spectroscopy with S=- 2
 - (K-, K+) reaction @ p>2 GeV/c
- n Baryon spectroscopy with S=-3
 - Ω: (K-, K+K+) @~6 GeV/c
 - [∞] Ω by p(pbar, Omega-bar)Omega ??
- n Charm in nuclei
 - Charmonium in nucleus?: pbar@3.7 6.6 GeV/c
 - Physics with D/Dbar??

м

Omega (Hitoshi Takahashi (KEK))

- n So far baryon interaction in the SU(3)_f octet has been (and is being) investigated.
- n Omega- is the only stable state for the strong interaction in the decuplet.
- Study of the Omega- nucleon interaction will bring completely new information on the baryon-baryon interaction at the decuplet within the framework of the quark picture.

Omega (Hitoshi Takahashi (KEK))

- n Strategy: step-by-step experiment
 - Get basic information about Omega-N interaction
 - n "A" dependence of the Omega- (and Omega* if possible) production
 - Angular distribution and spin/parity of Omega*s are also interesting to be measured.
 - Design experiments with the basic information
 - n Omega-nucleus with emulsion
 - n Omega-nucleon scattering
 - n X-rays from Omega-atom à Omega-A int., electric quadrupole moment of Omega-
- n Need 4~6 GeV/c K- beam

Ŋ,

Eg. p/K beam for excited baryons

- n For ~3 GeV, ~4.5 GeV/c p/K beams are necessary, while current max. is 2 GeV/c.
- n Unseparated beams (mainly p's) will be available at the high-momentum beam line.

http://hyperon.net/

<u>=</u> -
$\Xi(1530) P_{13}$
$\Xi(1690)$
$\Xi(1820) D_{13}$
$\Xi(1950)$
=(2030)

Particle	$L_{2I,2L}$	Status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Others
Ξ(1318)	P_{11}	****					weakly
$\Xi(1530)$	P_{13}	****	****				
$\Xi(1620)$		*	*	, ,			r
Ξ(1690)		***		***	**		
Ξ(1820)	D_{13}	***	**	***	**	**	
Ξ(1950)		***	**	**		*	
$\Xi(2030)$		***		**	***		
$\Xi(2120)$		*					
$\Xi(2250)$		**					3-body
Ξ(2370)		**					3-body
E (2500)		*		*	*		3-body

New Forms of Hadronic Matter K10 Beam Line at the J-PARC Contributions from Korea

м

K10: Possible Physics?

- n Baryon spectroscopy with S=-1
 - (pi, K+) reaction
- n Baryon spectroscopy with S=- 2
 - (K-, K+) reaction @ p>2 GeV/c
- n Baryon spectroscopy with S=-3
 - Ω: (K-, K+K+) @~6 GeV/c
 - Ω by p(pbar, Omega-bar)Omega ??
- n Charm in nuclei
 - Charmonium in nucleus?: pbar@3.7 6.6 GeV/c
 - Physics with D/Dbar??
- n Study on these possibilities are on going.
- n Input from theorists is indispensable!

(Expected) Time Line

	2012	2013	2014	2015	2016	2017	2018	2019	2020
High-p									
HD Ext									

Summary

- n (So-called) High-Momentum Beam Line can provide 10¹⁰ to 10¹²/sec primary protons and also unseparated secondary beams.
 - Device R&D is being done, and we expect the beam line would be completed in a few years.
 - The first experiment at the High-p is E16 (modification of phinside nucleus).
 - Dimuon spectrometer may present much opportunity in hadron physics.
- n Separated High-Momentum Beam Line is planned at the extended Hadron Hall.
 - Omega-.
 - Baryon spectroscopy with K- and pbar beams.
 - More to be discussed with theorists.