Novel aspect of hadron structure from Drell-Yan processes at J-PARC

Kazuhiro Tanaka (Juntendo U)

$\int d\eta e^{ik\eta} \left\langle P \right| \psi^{\dagger}(0) \psi(\eta) \left| P \right\rangle$

exotic components: *renorm. scale-dep.* not direct observable

$\int d\eta e^{ik\eta} \left\langle P | \psi^{\dagger}(0) \psi(\eta) | P \right\rangle$

exotic components: *renorm. scale-dep.* not direct observable

experiment	particles	energy	$x_1 \text{ or } x_2$	luminosity	
COMPASS	$\pi^{\pm} + p\uparrow$	$160 \mathrm{GeV}$	$x_2 = 0.2 - 0.3$	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	
		$\sqrt{s} = 17.4 \text{ GeV}$			
COMPASS	$\pi^{\pm} + p \uparrow$	$160 \mathrm{GeV}$	$x_2 \sim 0.05$	$2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$	
(low mass)		$\sqrt{s} = 17.4 \text{ GeV}$			
PAX	$p\uparrow + \bar{p}$	collider	$x_1 = 0.1 - 0.9$	$2 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$	
		$\sqrt{s} = 14 \text{ GeV}$			valance
PANDA	$\bar{p} + p \uparrow$	$15 { m GeV}$	$x_2 = 0.2 - 0.4$	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$	vuience
(low mass)		$\sqrt{s} = 5.5 \text{ GeV}$			
NICA	$p\uparrow + p$	collider	$x_1 = 0.1 - 0.8$	$10^{30} \text{ cm}^{-2} \text{s}^{-1}$	•
		$\sqrt{s} = 20 \text{ GeV}$			_
PHENIX/STAR	$p\uparrow + \bar{p}$	collider	$x_1 = 0.05 - 0.1$	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$	
		$\sqrt{s} = 500 \text{ GeV}$			
AnDY	$p\uparrow + \bar{p}$	collider	$x_1 = 0.1 - 0.5$?? $cm^{-2}s^{-1}$	
		$\sqrt{s} = 500 \text{ GeV}$			
SeaQuest	$p\uparrow + p$	$120 \mathrm{GeV}$	$x_1 = 0.3 - 0.9$	$2 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$	
		$\sqrt{s} = 15 \text{ GeV}$			
RHIC Internal	$p\uparrow + p$	$250 \mathrm{GeV}$	$x_1 = 0.2 - 0.6$	$3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
Target		$\sqrt{s} = 22 \text{ GeV}$			_
J-PARC	$p\uparrow + p$	$50 \mathrm{GeV}$	$x_1 = 0.5 - 0.9$	$10^{35} \text{ cm}^{-2} \text{s}^{-1}$	
		$\sqrt{s} = 10 \text{ GeV}$			500

exotic components in a normal hadron

$\int d\eta e^{ik\eta} \left\langle P | \psi^{\dagger}(0) \psi(\eta) | P \right\rangle$

exotic components: *renorm. scale-dep.* not direct observable

 $\int d\eta e^{ixP\eta} \left\langle PS \middle| \overline{\psi}(0) \Gamma \psi(\eta) \middle| PS \right\rangle$ $\Gamma = \gamma^{\mu}, \ \gamma^{\mu}\gamma_5, \ \sigma^{\mu\nu}$ Unpolarized q(x)DIS Helicity $\Delta q(\mathbf{X})$ Chiral-even $\frac{1}{2} = \boldsymbol{L}_{q+g} + \frac{1}{2}\Delta \boldsymbol{q} + \Delta \boldsymbol{g} \quad \boldsymbol{p} \rightarrow \boldsymbol{\mu}$ Transversity $\Delta_T q(\mathbf{X})$ **}**^^^^^ ~~~~

 $\int d\eta e^{ixP\eta} \left\langle PS \middle| \overline{\psi}(0) \Gamma \psi(\eta) \middle| PS \right\rangle$ $\Gamma = \gamma^{\mu}, \ \gamma^{\mu}\gamma_{5}, \ \sigma^{\mu\nu}$ Unpolarized CTEQ, GRV, MRSTW,... q(x)DIS Helicity GRSV, LSS, ACC, DSSV,... $\Delta q(x)$ Chiral-even p^{\uparrow} Little known Transversity $\Delta_T q(\mathbf{X})$ Chiral-odd

$$p^{\uparrow} + p^{\uparrow} \rightarrow \ell^{+}\ell^{-} + X \quad \text{@J-PARC} \qquad \text{if } \qquad \text{fl}$$

$$A_{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV}$$

$$\frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2}}{\sqrt{S}} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV}$$

$$\frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2$$

 $A_{TT} \gtrsim 10\%$ Golden channel

 $\alpha_{s}\ln^{2}\left(Q^{2}/Q_{T}^{2}\right)$ $\alpha_{s}\ln\left(Q^{2}/Q_{T}^{2}\right)$

resummation

H. Kawamura, J. Kodaira, KT,

NPB777 ('07) 203, PTP 118 ('07) 581 PLB662 ('08) 139

H. Kawamura, J. Kodaira, KT, NPB777 ('07) 203, PTP 118 ('07) 581 PLB662 ('08) 139

$$p^{\uparrow} + p^{\uparrow} \rightarrow \ell^{+}\ell^{-} + X \quad \text{@J-PARC} \qquad \text{if } \qquad \text{fl}$$

$$A_{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV}$$

$$\frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2}}{\sqrt{S}} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV} \qquad \qquad \sqrt{S} \lesssim 10 \text{ GeV}$$

$$\frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2}}{\sqrt{S}} = \frac{Q^{2$$

 $A_{TT} \gtrsim 10\%$ Golden channel

 $=\frac{d\sigma^{\rightarrow +} - d\sigma^{\rightarrow +}}{d\sigma^{\rightarrow +} + d\sigma^{\rightarrow +}}$ $e_q^2 \Delta q(x_1, Q^2) \Delta_T \overline{q}(x_2, Q^2) + \Delta \overline{q}(x_1, Q^2) \Delta_T q(x_2, Q^2)$ $\propto -\frac{q}{q}$ $\sum e_q^2 \left[\mathbf{q}(\mathbf{x}_1, \mathbf{Q}^2) \overline{\mathbf{q}}(\mathbf{x}_2, \mathbf{Q}^2) + \overline{\mathbf{q}}(\mathbf{x}_1, \mathbf{Q}^2) \mathbf{q}(\mathbf{x}_2, \mathbf{Q}^2) \right]$

$$A_{LT} = \frac{d\sigma^{\rightarrow\uparrow} - d\sigma^{\rightarrow\downarrow}}{d\sigma^{\rightarrow\uparrow} + d\sigma^{\rightarrow\downarrow}} \qquad \Rightarrow \qquad \text{if} \qquad \text{if}$$

"3-body"

$$= \frac{S_{\perp}^{\mu}P^{+}}{8M^{2}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \int_{0}^{1} du \int_{-u}^{u} dt$$

$$\times \langle PS_{\perp} | \overline{\psi}(\frac{-uz^{-}}{2}) \not z \Big[ug\widetilde{F}_{\mu\nu}(\frac{tz^{-}}{2}) - itgF_{\mu\nu}(\frac{tz^{-}}{2})\gamma_{5} \Big] z^{\nu}\psi(\frac{uz^{-}}{2}) | PS_{\perp} \rangle$$
for $g_{T}(x, Q^{2})$

$$iP^{+} \in dz^{-} \quad \text{int} \quad z \in C^{1} \quad z \in C^{U}$$

$$= \frac{\pi}{8M} \int \frac{dz}{2\pi} e^{ixP^{-}z} \int_{0}^{0} duu \int_{-u}^{u} dtt$$
$$\times \left\langle PS_{\parallel} \left| \overline{\psi} \left(\frac{-uz^{-}}{2} \right) i\sigma^{\alpha\nu} \gamma_{5} gF_{\mu\nu} \left(\frac{tz^{-}}{2} \right) z_{\alpha} z^{\nu} \psi \left(\frac{uz^{-}}{2} \right) \right| PS_{\parallel} \right\rangle$$

for $h_L(x, Q^2)$

$\int d\eta e^{ik\eta} \left\langle P | \psi^{\dagger}(0) \psi(\eta) | P \right\rangle$

exotic components: *renorm. scale-dep.* not direct observable

@J-PARC $\sqrt{S} = 10 \text{ GeV}$ (S. Yoshida)

"3-body"

$$= \frac{S_{\perp}^{\mu}P^{+}}{8M^{2}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \int_{0}^{1} du \int_{-u}^{u} dt$$

$$\times \langle PS_{\perp} | \overline{\psi}(\frac{-uz^{-}}{2}) \not z \Big[ug\widetilde{F}_{\mu\nu}(\frac{tz^{-}}{2}) - itgF_{\mu\nu}(\frac{tz^{-}}{2})\gamma_{5} \Big] z^{\nu}\psi(\frac{uz^{-}}{2}) | PS_{\perp} \rangle$$
for $g_{T}(x, Q^{2})$

$$iP^{+} \in dz^{-} \quad \text{int} \quad z \in C^{1} \quad z \in C^{U}$$

$$= \frac{\pi}{8M} \int \frac{dz}{2\pi} e^{ixP^{-}z} \int_{0}^{0} duu \int_{-u}^{u} dtt$$
$$\times \left\langle PS_{\parallel} \left| \overline{\psi} \left(\frac{-uz^{-}}{2} \right) i\sigma^{\alpha\nu} \gamma_{5} gF_{\mu\nu} \left(\frac{tz^{-}}{2} \right) z_{\alpha} z^{\nu} \psi \left(\frac{uz^{-}}{2} \right) \right| PS_{\parallel} \right\rangle$$

for $h_L(x, Q^2)$

$$\int \frac{d\lambda}{2\pi} \int \frac{d\mu}{2\pi} e^{i\lambda x_1} e^{i\zeta(x_2-x_1)} \langle p S_{\perp} | \overline{\psi}(0) g F^{\mu+}(\zeta n) \psi(\lambda n) | p S_{\perp} \rangle$$

$$= \frac{M_{N}}{4} \not p S_{\perp \alpha} p_{\beta} \varepsilon^{\alpha \beta \mu} G_{F}(x_{1}, x_{2}) + i \frac{M_{N}}{4} \gamma_{5} \not p S_{\perp}^{\mu} \widetilde{G}_{F}(x_{1}, x_{2})$$

$$p \xrightarrow{x_{1}p^{+}} p \xrightarrow{x_{2}p^{+}} p$$

$$f_{1T}^{\perp}(x,k_{\perp}) = \int \frac{dx'}{x'} \Big[C_{SGP}(x,x';k_{\perp}) G_{F}(x',x') + C_{HPo}(x,x';k_{\perp}) G_{F}(x,x') \\ + C_{HPn}(x,x';k_{\perp}) G_{F}(x,x-x') + C_{HPnT}(x,x';k_{\perp}) \widetilde{G}_{F}(x,x-x') \\ + C_{HPoT}(x,x';k_{\perp}) \widetilde{G}_{F}(x,x') + \cdots \Big]$$

$$\sim \int d\eta e^{ik\eta} \left\langle PS_{\perp} \left| \psi^{\dagger}(0) U(\mathbf{A}_{\perp}) \psi(\eta) \right| PS_{\perp} \right\rangle$$

 $\sim p \cdot (\mathbf{k}_{\perp} \times \mathbf{S}_{\perp})$

TMD (Sivers function)

Single (Transverse) Spin Asymmetry **SSA**

$$d\sigma^{\uparrow} \sim \mathbf{S}_{\perp} \cdot \left(\mathbf{p} \times \mathbf{q} \right)$$

$$A_{N} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$\label{eq:product} \begin{split} p^{\uparrow}p &\rightarrow \ell^{+}\ell^{-}X \\ & \textbf{J-PARC, GSI, ...} \end{split}$$

@J-PARC (F. Yuan, W. Vogelsang)

$$d\sigma = \int d^2 b e^{i\mathbf{b}\cdot\mathbf{Q}_T} e^{S(b,Q)} \sum_q e_q^2 \left[q(x_1, 1/b^2) \overline{q}(x_2, 1/b^2) + \overline{q}(x_1, 1/b^2) q(x_2, 1/b^2) \right] + \cdots$$
$$e^{S(b,Q)} \text{ is universal !}$$

$$S(b,Q) = -\int_{\frac{1}{b^2}}^{Q^2} \frac{d\mu^2}{\mu^2} \left\{ \left(\ln \frac{Q^2}{\mu^2} \right) A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right\} \right\}$$
$$A(\alpha_s) = C_F \frac{\alpha_s}{\pi} + \frac{1}{2} C_F \left\{ \left(\frac{67}{18} - \frac{\pi^2}{6} \right) C_G - \frac{5}{9} N_f \right\} \left(\frac{\alpha_s}{\pi} \right)^2$$
$$B(\alpha_s) = -\frac{3}{2} C_F \frac{\alpha_s}{\pi}$$

H. Kawamura, J. Kodaira, KT, NPB777 ('07) 203

$$d\sigma = \int d^{2}b e^{ib \cdot Q_{T}} e^{S(b,Q)} \sum_{q} e_{q}^{2} \left[q(x_{1}, 1/b^{2}) \overline{q}(x_{2}, 1/b^{2}) + \overline{q}(x_{1}, 1/b^{2}) q(x_{2}, 1/b^{2}) \right] + \cdots$$

$$e^{S(b,Q)} \text{ is universal !}$$

$$e^{S(b,Q)} \to e^{S(b,Q)} e^{-g_{NP}b^{2}} \qquad g_{NP} = g_{1} + g_{2} \ln\left(Q/2Q_{0}\right)$$

1 cut-off at b_{max} : $b \rightarrow b_* = \frac{b}{\sqrt{1 + b^2 / b_{max}^2}}$ J. Collins, D. Soper, G. Sterman ('82) A. Kulesza, W. Stirling ('02) C. Balazs, C. Yuan ('00)

Global fit $g_1 = 0.016 \text{ GeV}^2$, $g_2 = 0.54 \text{ GeV}^2$ $(b_{\text{max}} = 0.5 \text{ GeV}^{-1})$ F. Landry, R. Brock, P. Nadolsky. C. Yuan ('03)

2. Contour deformation

E. Laenen, G. Sterman, W. Vogelsang ('00)

A. Kulesza, G. Sterman, W. Vogelsang ('02)

G. Bozzi, S. Catani, D. de Florian, M. Grazzini ('02)

H. Kawamura, J. Kodaira, KT ('07)

Global fit using contour deformation

M. Hirai, H. Kawamura, KT ('12)

Experimental data sets

	Ехр	√s (GeV)	Target	Q _⊤ range (GeV)	Q range (GeV)	# of data (pT < 22 GeV)
DV	R209	62	P-P	0.2 – 1.8	5.0 - 8.0	5
5	R209	62	P-P	0.2 – 1.8	8.0 - 11.0	5
Z^{0}	CDF run-0	1800	P-Pbar	0.0 - 22.8	75 - 105	7
	CDF run-1	1800	P-Pbar	0.0 - 22.0	66 - 116	33
	D0 run-1	1800	P-Pbar	0.0 - 22.0	75 - 105	15

 $d\sigma = \int d^{2}b e^{i\mathbf{b}\cdot\mathbf{Q}_{T}} e^{S(b,Q)} \sum_{q} e_{q}^{2} \left[q(x_{1},1/b^{2})\overline{q}(x_{2},1/b^{2}) + \overline{q}(x_{1},1/b^{2})q(x_{2},1/b^{2}) \right] + \cdots$ $e^{S(b,Q)} \text{ is universal !} \qquad g_{\mathrm{NP}} = g_{1} + g_{2} \ln\left(\frac{Q}{2Q_{0}}\right)$ $e^{S(b,Q)} \to e^{S(b,Q)} e^{-g_{\mathrm{NP}}b^{2}}$

1-parameter gaussian fit of $e^{-g_{\rm NP}b^2}$

for each set

 $g_{\rm NP} = g_1 + g_2 \ln\left(Q/2Q_0\right)$

 $g_1 = 0.016 \text{ GeV}^2, \ g_2 = 0.54 \text{ GeV}^2$ F. Landry, R. Brock, P. Nadolsky. C. Yuan ('03)

$$g_{\rm NP} = g_1 + g_2 \ln \left(Q/2Q_0 \right) \qquad \left[\begin{array}{c} g_1 \\ Q_0 = 1.3 \text{ GeV} \end{array} \right]$$

 $g_1 = 0.016 \text{ GeV}^2, g_2 = 0.54 \text{ GeV}^2$ F. Landry, R. Brock, P. Nadolsky. C. Yuan ('03)

 $e^{-g_{\rm NP}b^2}$ $\langle \, k_{ au} \,
angle \sim$

Global fit using contour deformation

M. Hirai, H. Kawamura, KT ('12)

Experimental data sets

	Ехр	√s (GeV)	Target	Q _⊤ range (GeV)	Q range (GeV)	# of data (pT < 22 GeV)
DV	R209	62	P-P	0.2 – 1.8	5.0 - 8.0	5
5	R209	62	P-P	0.2 – 1.8	8.0 - 11.0	5
Z^{0}	CDF run-0	1800	P-Pbar	0.0 - 22.8	75 - 105	7
	CDF run-1	1800	P-Pbar	0.0 - 22.0	66 - 116	33
	D0 run-1	1800	P-Pbar	0.0 - 22.0	75 - 105	15

 $d\sigma = \int d^{2}b e^{i\mathbf{b}\cdot\mathbf{Q}_{T}} e^{S(b,Q)} \sum_{q} e_{q}^{2} \left[q(x_{1},1/b^{2})\overline{q}(x_{2},1/b^{2}) + \overline{q}(x_{1},1/b^{2})q(x_{2},1/b^{2}) \right] + \cdots$ $e^{S(b,Q)} \text{ is universal !} \qquad g_{\mathrm{NP}} = g_{1} + g_{2} \ln\left(\frac{Q}{2Q_{0}}\right)$ $e^{S(b,Q)} \to e^{S(b,Q)} e^{-g_{\mathrm{NP}}b^{2}}$

1-parameter gaussian fit of $e^{-g_{\rm NP}b^2}$

for each set

Data vs. Theory

M. Hirai, H. Kawamura, KT ('12)

Summary: Drell-Yan processes at J-PARC Golden channel to probe exotic components in normal hadron

$$\begin{array}{ccc} A_{TT} & \Delta_{T} q(x), \ \Delta_{T} \overline{q}(x) & & & & \langle PS | \overline{\psi}(0) \sigma^{\mu\nu} \psi(\eta) | PS \rangle \\ A_{LT} & h_{L}(x), \ g_{T}(x) & & & & & \langle P | \overline{\psi}(0) F_{\mu\nu}(\zeta) \psi(\eta) | P \rangle \end{array}$$

including large x region & antiquarks

 $\langle k_T \rangle \sim \sqrt{g_{\rm NP}}$

Clean!

Sudakov resummation $e^{S(b,Q)} \rightarrow e^{S(b,Q)} e^{-g_{NP}b^2}$ constraints to determine $g_{NP} = g_1 + g_2 \ln(Q/2Q_0)$